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ABSTRACT
Many Android apps heavily depend on collecting and sharing sen-
sitive privacy information, such as device ID, location, and postal
address, to provide service and value. To protect user privacy, apps
are typically required by market places to provide privacy policies
informing users about how their private information will be pro-
cessed. In this paper, we present PVDetector, an automatic tool
that analyzes Android apps to detect privacy-policy violations, i.e.,
inconsistencies between an app’s data collection code and the cor-
responding description in its privacy policy.

1. INTRODUCTION
Mobile apps become increasingly prevalent as they provide timely,

user-friendly services such as shopping, instant messaging, travel,
and gaming in context and on-demand. To meet users’ require-
ment and provide value, these services heavily depend on collect-
ing and sharing sensitive personal information, such as user loca-
tion, contact lists, and app usage patterns. The increased growth
in app markets has out-paced the development of mechanisms to
guarantee user privacy. Privacy policies are the primary means to
inform users about how apps access and process their personal in-
formation. Since privacy policies are legal documents, which may
not be written by developers, and the code can change while the
policy remains static, there is a risk that the privacy polices become
misaligned with actual code in the software product. In addition
to misinforming users, such inconsistencies between policies and
code may have severe legal repercussions, resulting in significant
fines or burdensome security audits.

In this paper, to bridge the gap between policy and practice, we
present a tool named PVDetector (Privacy-policy Violation Detec-
tor) to map the descriptive phrases in privacy policies expressed in
natural language and privacy-related API invocations implemented
in the corresponding code. This mapping will provide the seman-
tics needed to check code for misalignment with privacy policy,
and to suggest where the code or policy may be changed to fit the
functional and legal requirements of apps.
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2. TOOL CONSTRUCTION AND USAGE
The overview of the construction process and the structure of

PVDetector is presented in Figure 1. In the figure, we use the an-
notations of data flow chart, and the scope of PVDetector tool is
presented as a box with dashed border and label “PVDetector”.

As shown in the figure, to construct PVDetector, we need to pre-
pare two resource files: the policy phrase ontology that describes
the conceptual inclusion relationship between policy phrases, and
the API-Phrase mapping file that maps each privacy-related An-
droid API method to a number of policy phrases. In the prepara-
tion of policy phrase ontology, we first leveraged crowd sourcing
to annotate phrases related to collected privacy-data from 50 pri-
vacy policies of 50 top Android apps (used as seed apps) in the
Google Play Market. After building the policy lexicon with anno-
tation, we manually find out all conceptual inclusion relationships
between policies, and with these relationships, we build a policy
phrase ontology with the ontology building tool Protégé [1]. In
the preparation of API-Phrase mapping, we also performed crowd
sourcing to annotation privacy-collection related API methods from
the official Android API documents. After that, for each annotated
API method, we manually map it to one or multiple phrases in the
privacy lexicon, which forms the final API-Phrase mapping.

After we constructed the two resource files, our PVDetector tool
is fully automatic for any given Android app. The input of PVDe-
tector is the byte code (i.e., apk file) and the privacy policy of an
app, and the output of PVDetector is the list of detected violations.
A violation can be either a strong violation (no phrases related to
an API method invocation is found) or a weak violation (no phrases
directly mapped to an API method invocation is found, but some
related abstract phrases are found).

The PVDetector tool mainly consists of three components: Flow-
Droid [2], the phrase extraction component, and the violation de-
tection component. For information flow analysis, we leverage the
state-of-the-art tool FlowDroid to analyze the byte code of a given
app, and identify all the privacy-data-collecting API invocations
whose return values are sent to network sinks. Our phrase extrac-
tion component first identifies data-collection-related paragraphs in
privacy policies according to whether a paragraph contains any col-
lection verbs (e.g., collect, access), and then extracts the policy
phrases occurrences from these paragraphs. Finally, our violation
detection component matches the network-targeting privacy-data-
collecting APIs and mentioned policy phrases, to detect and output
all violations.
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Figure 1: Tool Construction and Structure

3. RELATED WORK
On tool support for privacy-policy-related tasks, Rowen et al. [8]

have developed an IDE plugin, Privacy Policy Auto-Generation in
Eclipse (PAGE), for generating privacy policies along side the de-
velopment of the app. PAGE works by guiding the user through
a series of questions about the implementation of the app. Based
on the answers, PAGE uses existing policy templates to generate
a privacy policy for the app. In another research, Kelley et al.
discussed the importance of privacy policy and permission repre-
sentation in Android apps marketplaces conducted through a user
study [6]. They designed a privacy fact checklist for a set of 12 An-
droid applications. Their goal was studying the effects of privacy
and permission representation on user decision making for down-
loading an Android application. Much research has been carried
out on ontology implementation and usage in computer and infor-
mation systems in recent years [3, 5]. However, the majority of
these works are regarding permission based systems, firewalls, and
pervasive systems. The research work most close to this paper is
Eddy [4]. In the paper, Breaux et al. presented an ontology to an-
alyze the privacy policy of multi-tier systems to find the conflicts
between the policies regarding data collection, usage, retention and
transfer. There has been also a number of works [2] [7] on in-
formation flow analysis and FlowDroid [2] is a state-of-art static
information analysis tool for Android apps.
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