
PVDetector: A Detector of Privacy-Policy Violations for
Android Apps

Rocky Slavin1, Xiaoyin Wang1, Mitra Bokaei Hosseini1, James Hester2, Ram Krishnan1,
Jaspreet Bhatia3, Travis D. Breaux3, and Jianwei Niu1

1University of Texas at San Antonio, San Antonio, TX, USA
2University of Texas at Dallas, Dallas, TX, USA

3Carnegie Mellon University, Pittsburgh, PA, USA
{rocky.slavin, xiaoyin.wang, mitra.bokaeihosseini, ram.krishnan, jianwei.niu}@utsa.edu

william.hester@utdallas.edu, {jbhatia, breaux}@cs.cmu.edu

ABSTRACT
Many Android apps heavily depend on collecting and sharing sen-
sitive privacy information, such as device ID, location, and postal
address, to provide service and value. To protect user privacy, apps
are typically required by market places to provide privacy policies
informing users about how their private information will be pro-
cessed. In this paper, we present PVDetector, an automatic tool
that analyzes Android apps to detect privacy-policy violations, i.e.,
inconsistencies between an app’s data collection code and the cor-
responding description in its privacy policy.

1. INTRODUCTION
Mobile apps become increasingly prevalent as they provide timely,

user-friendly services such as shopping, instant messaging, travel,
and gaming in context and on-demand. To meet users’ require-
ment and provide value, these services heavily depend on collect-
ing and sharing sensitive personal information, such as user loca-
tion, contact lists, and app usage patterns. The increased growth
in app markets has out-paced the development of mechanisms to
guarantee user privacy. Privacy policies are the primary means to
inform users about how apps access and process their personal in-
formation. Since privacy policies are legal documents, which may
not be written by developers, and the code can change while the
policy remains static, there is a risk that the privacy polices become
misaligned with actual code in the software product. In addition
to misinforming users, such inconsistencies between policies and
code may have severe legal repercussions, resulting in significant
fines or burdensome security audits.

In this paper, to bridge the gap between policy and practice, we
present a tool named PVDetector (Privacy-policy Violation Detec-
tor) to map the descriptive phrases in privacy policies expressed in
natural language and privacy-related API invocations implemented
in the corresponding code. This mapping will provide the seman-
tics needed to check code for misalignment with privacy policy,
and to suggest where the code or policy may be changed to fit the
functional and legal requirements of apps.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MobileSoft ’16 May 16-17 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4178-3/16/05.

DOI: http://dx.doi.org/10.1145/2897073.2897720

2. TOOL CONSTRUCTION AND USAGE
The overview of the construction process and the structure of

PVDetector is presented in Figure 1. In the figure, we use the an-
notations of data flow chart, and the scope of PVDetector tool is
presented as a box with dashed border and label “PVDetector”.

As shown in the figure, to construct PVDetector, we need to pre-
pare two resource files: the policy phrase ontology that describes
the conceptual inclusion relationship between policy phrases, and
the API-Phrase mapping file that maps each privacy-related An-
droid API method to a number of policy phrases. In the prepara-
tion of policy phrase ontology, we first leveraged crowd sourcing
to annotate phrases related to collected privacy-data from 50 pri-
vacy policies of 50 top Android apps (used as seed apps) in the
Google Play Market. After building the policy lexicon with anno-
tation, we manually find out all conceptual inclusion relationships
between policies, and with these relationships, we build a policy
phrase ontology with the ontology building tool Protégé [1]. In
the preparation of API-Phrase mapping, we also performed crowd
sourcing to annotation privacy-collection related API methods from
the official Android API documents. After that, for each annotated
API method, we manually map it to one or multiple phrases in the
privacy lexicon, which forms the final API-Phrase mapping.

After we constructed the two resource files, our PVDetector tool
is fully automatic for any given Android app. The input of PVDe-
tector is the byte code (i.e., apk file) and the privacy policy of an
app, and the output of PVDetector is the list of detected violations.
A violation can be either a strong violation (no phrases related to
an API method invocation is found) or a weak violation (no phrases
directly mapped to an API method invocation is found, but some
related abstract phrases are found).

The PVDetector tool mainly consists of three components: Flow-
Droid [2], the phrase extraction component, and the violation de-
tection component. For information flow analysis, we leverage the
state-of-the-art tool FlowDroid to analyze the byte code of a given
app, and identify all the privacy-data-collecting API invocations
whose return values are sent to network sinks. Our phrase extrac-
tion component first identifies data-collection-related paragraphs in
privacy policies according to whether a paragraph contains any col-
lection verbs (e.g., collect, access), and then extracts the policy
phrases occurrences from these paragraphs. Finally, our violation
detection component matches the network-targeting privacy-data-
collecting APIs and mentioned policy phrases, to detect and output
all violations.

Android API
Documents

Privacy Policies
of Seed Apps

Policy Phrase
Annotation

Policy
Phrase

Ontology

Privacy
Policy

Byte
Code

A Given App

FlowDroid

API-Doc
Annotation

Policy
Lexicon

API-
Lexicon
Mapping

API-Phrase
Mapping

Phrase
Extraction

Mapping
Construction

Ontology
Construction

Mentioned
Policy Phrases

Network Targeting
Privacy-Data-Collecting

API Invocations

Violation
Detection

Violations

Manual Preparation

Automatic Violation Detection

PVDetector

Figure 1: Tool Construction and Structure

3. RELATED WORK
On tool support for privacy-policy-related tasks, Rowen et al. [8]

have developed an IDE plugin, Privacy Policy Auto-Generation in
Eclipse (PAGE), for generating privacy policies along side the de-
velopment of the app. PAGE works by guiding the user through
a series of questions about the implementation of the app. Based
on the answers, PAGE uses existing policy templates to generate
a privacy policy for the app. In another research, Kelley et al.
discussed the importance of privacy policy and permission repre-
sentation in Android apps marketplaces conducted through a user
study [6]. They designed a privacy fact checklist for a set of 12 An-
droid applications. Their goal was studying the effects of privacy
and permission representation on user decision making for down-
loading an Android application. Much research has been carried
out on ontology implementation and usage in computer and infor-
mation systems in recent years [3, 5]. However, the majority of
these works are regarding permission based systems, firewalls, and
pervasive systems. The research work most close to this paper is
Eddy [4]. In the paper, Breaux et al. presented an ontology to an-
alyze the privacy policy of multi-tier systems to find the conflicts
between the policies regarding data collection, usage, retention and
transfer. There has been also a number of works [2] [7] on in-
formation flow analysis and FlowDroid [2] is a state-of-art static
information analysis tool for Android apps.

Acknowledgement
The authors are supported in part by NSF Awards CNS-0964710,
CNS-1330596, CCF-1464425, NSA Grant on Science of Security,
and DHS grant DHS-14-ST-062-001.

4. REFERENCES
[1] Protégé. http://protege.stanford.edu/, 2015.

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 259–269, 2014.

[3] J. Bradshaw, A. Uszok, R. Jeffers, N. Suri, P. Hayes,
M. Burstein, A. Acquisti, B. Benyo, M. Breedy, M. Carvalho,
et al. Representation and reasoning for daml-based policy and
domain services in kaos and nomads. In Proceedings of the
second international joint conference on Autonomous agents
and multiagent systems, pages 835–842. ACM, 2003.

[4] T. D. Breaux, H. Hibshi, and A. Rao. Eddy, a formal language
for specifying and analyzing data flow specifications for
conflicting privacy requirements. Requirements Engineering,
19(3):281–307, 2014.

[5] H. Chen, F. Perich, T. Finin, and A. Joshi. Soupa: Standard
ontology for ubiquitous and pervasive applications. In Mobile
and Ubiquitous Systems: Networking and Services, 2004.
MOBIQUITOUS 2004. The First Annual International
Conference on, pages 258–267. IEEE, 2004.

[6] P. G. Kelley, L. F. Cranor, and N. Sadeh. Privacy as part of the
app decision-making process. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages
3393–3402. ACM, 2013.

[7] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: Statically
vetting android apps for component hijacking vulnerabilities.
In CCS, pages 229–240, 2012.

[8] M. Rowan and J. Dehlinger. Encouraging privacy by design
concepts with privacy policy auto-generation in eclipse
(page). In Proceedings of the 2014 Workshop on Eclipse
Technology eXchange, pages 9–14. ACM, 2014.

