Analyzing privacy policies through syntax-driven semantic analysis of information types

Mitra Bokaei Hosseini a,∗, Travis D. Breaux b, Rocky Slavin c, Jianwei Niu c, Xiaoyin Wang c

a St. Mary’s University, 1 Camino Santa Maria, San Antonio, TX, United States of America
b Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, United States of America
c University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, United States of America

A R T I C L E I N F O
Keywords:
Privacy policy
Ambiguity
Generality
Ontology

A B S T R A C T
Context: Several government laws and app markets, such as Google Play, require the disclosure of app data practices to users. These data practices constitute critical privacy requirements statements, since they underpin the app’s functionality while describing how various personal information types are collected, used, and with whom they are shared.

Objective: Abstract and ambiguous terminology in requirements statements concerning information types (e.g., “we collect your device information”), can reduce shared understanding among app developers, policy writers, and users.

Method: To address this challenge, we propose a syntax-driven method that first parses a given information type phrase (e.g. mobile device identifier) into its constituents using a context-free grammar and second infers semantic relationships between constituents using semantic rules. The inferred semantic relationships between a given phrase and its constituents generate a hierarchy that models the generality and ambiguity of phrases. Through this method, we infer relations from a lexicon consisting of a set of information type phrases to populate a partial ontology. The resulting ontology is a knowledge graph that can be used to guide requirements authors in the selection of the most appropriate information type terms.

Results: We evaluate the method’s performance using two criteria: (1) expert assessment of relations between information types; and (2) non-expert preferences for relations between information types. The results suggest performance improvement when compared to a previously proposed method. We also evaluate the reliability of the method considering the information types extracted from different data practices (e.g., collection, usage, sharing, etc.) in privacy policies for mobile or web-based apps in various app domains.

Contributions: The method achieves average of 89% precision and 87% recall considering information types from various app domains and data practices. Due to these results, we conclude that the method can be generalized reliably in inferring relations and reducing the ambiguity and abstraction in privacy policies.

1. Introduction

Government regulations increasingly require mobile and web-based application (app) companies to standardize their data practices concerning the collection, use, and sharing of various types of information. A summary of these practices are communicated to users through online privacy policies [1,2], which have become a well-established source of requirements for requirements engineers [3,4], because they need to be consistent with software behaviors.

The challenge of acquiring requirements from data practice descriptions, however, is that privacy policies often contain ambiguities [5], which admit more than one interpretation [6]. Furthermore, policies are intended to generalize across a wide range of data practices, and are not limited to describe a single software system, in which case they also exhibit vagueness and generality [7]. Berry and Ramsties distinguish four broad categories of linguistic ambiguity, including lexical, syntactic, semantic, and pragmatic ambiguity [8]. They further separate vagueness and generality from ambiguity. Vagueness occurs when a phrase admits borderline cases, e.g., the word “tall” is vague when...
considering a subject who is neither tall nor not tall \[8\]. In \textit{generality}, a superordinate term refers to two or more subordinate terms. In linguistics, generality is encoded by the relationship between a \textit{hypernym}, or the general term, and more specific terms, called \textit{hyponyms}.

In privacy policies, information types can be expressed using both vague and general terms. Many policies describe the vague phrase “personal information,” which can include both a person’s “age” and their “health conditions,” which users may consider more or less private, leading to boundary cases. In addition, they contain general terms, such as “address,” which are intended to refer to more specific meanings, such as “postal address,” “e-mail address,” or “network address,” in which case the reader must choose an interpretation to fit the given context. Finally, these policies also contain another kind of semantic indeterminacy that has not historically been included in ambiguity, generality or vagueness, which concerns \textit{holonyms}, or wholes, and \textit{meronyms}, or the parts of wholes. For example, when a policy refers to “postal address,” it also refers to “city,” “country,” and “postal code,” which are distinct parts of the postal address.

Ambiguity, generality, and vagueness have been extensively studied in requirements engineering research, particularly in regulatory and policy documents. This includes techniques to identify, classify, and model ambiguity in regulations, such as HIPAA \[5,9\], and techniques to identify generality \[3,10,11\] and vagueness \[12\] in privacy policies. Recently, two studies employed hand-crafted regular expressions over nominals, and constituency parse trees derived from individual policy statements to extract generalities, specifically hypernyms \[13,14\]. This prior work demonstrates the difficulty of scaling manual methods to construct ontologies from policies, and thus motivates the need for automated ontology discovery techniques.

In this paper, we focus on the role of hypernyms, meronyms and synonyms and their formal relationships among terminology in privacy policies (see Section 2 for examples). We propose a novel, automated syntax-driven semantic analysis method for constructing partial ontologies to formalize these relationships. Formal ontologies can be used to automate requirements analysis, specifically where the “informal meets the formal”, as in where mathematical models are extracted from natural language text \[15\]. Recently, such ontologies have enabled precise, reusable and semi-automated analysis to trace requirements from policies to code execution \[11,16\] and in checking formal specifications for conflicting interpretations \[3,17\].

Our proposed method is based on the principle of compositionality, which states the meaning of a given phrase can be derived from the meaning of its constituents \[18,19\]. Using this principle and grounded analysis of 356 unique information type phrases (e.g., mobile device identifier), we developed a context-free grammar (CFG) to decompose a given information type phrase into its constituents. The production rules in the CFG are augmented with semantic rules, which we call semantic attachments \[20\], that are used to infer semantic relationships, including \textit{hypernymy}, \textit{meronymy}, and \textit{synonymy} between the given information type constituents. This method is evaluated on two sets of 491 and 1853 information type phrases extracted from 60 privacy policies. Applying our method on these information type yields 5044 and 21,745 semantic relations, respectively.

This work extends a previous conference paper \[21\] with new evaluation of the syntax-driven method using two sources of ground-truth: (a) relations identified by experts with experience in privacy and data practices; and (b) the preferences expressed by a population of web and mobile-app users (i.e., non-experts) toward relationships between information types. This novel contribution adds a new evaluation method that reaches beyond expert opinion, which is the historical benchmark for constructing corpora and performing natural language evaluation, to include popular opinion, which is better suited to measure how potential users interpret data practice descriptions in privacy policies. The overall contributions of the current paper are as follows: (1) a syntax-driven method to infer semantic relations from a given information type using principle of compositionality; (2) an empirical evaluation of the method using expert-inferred relations; (3) an empirical evaluation of the method using population preferences; (4) an empirical evaluation of the method using statements about mobile and web-based apps across multiple domains.

This paper is organized as follows: in Section 2, we discuss the problem and motivation for ontology construction with an example ontology illustration; in Section 3, we discuss important terminology and lexicons; in Section 5, we introduce the syntax-driven method. In Section 6, we present the evaluation using four experiments and results, followed by limitations in Section 7, threats to validity in Section 8, and related work in Section 4. Finally, we discuss the application and implication of ontologies in practice, and future work in Sections 9 and 10.

2. Problem and motivation

Ambiguous terminology in legal requirements and privacy policies can lead to multiple, unwanted interpretations \[9\] and further reduce the shared understanding among requirements engineers, policy authors, and regulators \[22\]. A lack of shared understanding has consequences, such as the recent $5 billion settlement of Federal Trade Commission with Facebook \[23\]. This penalty arose from poor data practices resulting in the leaking of 87 million users’ personal information to third parties. The best intent to comply with laws can be obstructed by ambiguous policies. In general, ambiguity in privacy policies creates challenges for managing privacy, tracing privacy requirements to data practices in code, and checking the compliance of privacy policies with regulations.

Researchers have proposed methods to ensure data transparency and compliance by analyzing data practices expressed in privacy policies. For example, Breaux et al. formalized data practice requirements from privacy policies using Description Logic \[24\] to automatically detect conflicting requirements \[3\] and to trace data flows across policies of interacting services \[3\]. Tracing privacy requirements across policies can enhance developers’ understanding of third-party data use, and assist in compliance with legal requirements, such as General Data Protection Regulation (GDPR) Articles 13.1 and 14.12. Other researchers have proposed techniques to trace requirements from privacy policies to app code using lookup tables, platform permissions, and information flow analysis \[25,26\].

These methods are based on manually-compiled “flat” lexicons, wherein information types were grouped into a small number of categories, such as “location”, “contact”, or “identifier” \[26\]. Lexicons that group terms into a small number of broad categories introduce inaccuracies because categorization is based on satisficing, in which the analyst ignores subtle differences between the meanings of two or more terms. For example, the phrase “WiFi SSID” can be construed to mean a type of location information \[26\] when location is one of a few categories to choose from (i.e., the categorization is a good fit, given the constraints). However, the term actually describes a compound technology that must be combined with the MAC address used by the device that is referenced by the SSID, before it can be indirectly correlated with location. Without this technology, SSIDs are not a kind of location information, whereas city, zip code, and longitude and latitude are kinds of location information.

In addition to coarse categories, ambiguity and inconsistency arise from \textit{hypernymy}, which occurs when a more general information type is used instead of a more specific information type (e.g., the broader term “device information” used in place of “mobile device identifier”) \[27\]. Consider the following snippet from EA Games’ privacy policy stating: “We collect other information automatically […] including: […] Mobile and other hardware or device identifiers; Browser information, including your browser type and the language you prefer; […]

\footnote{https://www.ea.com/legal/privacy-policy.}
Information about your device, hardware and software, such as your hardware settings and components [...]”. In this example, an analyst who is compiling this list within their company may make several inferences: (1) that “mobile identifiers”, “hardware identifiers”, and “device identifiers” are all kinds of “identifiers” that EA collects; (2) that “browser type” and “browser language” are both kinds of “browser information”; (3) “hardware information” and “software information” can be inferred as specific kinds of “device information”; and (4) that “hardware settings and components” are a specific kind of “hardware information”. The analyst can infer similar hypernymy relationships between information types intuitively by applying their domain knowledge and experience. Moreover, an information type can have more than one hypernym. An analyst documenting these inferences could create a reusable ontology, shown in Fig. 1, to make the semantic relationships among terms explicit via hypernymy.

Ontology Usage Scenario: In our previous research, we developed the policy analysis tool PVDetector (Privacy-policy Violation Detector) to identify misalignments between policy and practice [28]. This tool maps the descriptive information types in privacy policies expressed in natural language to privacy-related API methods implemented in the corresponding code. This mapping provides the semantics needed to check code for misalignment with privacy policy, and to suggest where the code or policy may be changed to fit the functional and legal requirements of apps [28]. During misalignment detection, the tool utilizes an ontology of private information terms as a resource to formalize and identify relations between information types in natural language privacy policies. PVDetector is designed to be fully automatic for arbitrary Android apps given an up-to-date policy term ontology and API-phrase mapping. The input of PVDetector is the app’s byte code (i.e., apk file) and corresponding privacy policy. The output is a list of detected misalignments which are marked as either strong (i.e., no information type related to an API method invocation is found in the privacy policy) or a weak (i.e., no information type directly mapped to an API method invocation is found, but some related abstract information type is found in the privacy policy). For example, assume an app has the following text in its privacy policy.

“We collect browsing history, contact information, mobile identifiers, and language information.” If, upon analysis of the app’s actual dataflows, a flow is detected from the method getMacAddress() to some method that sends data away through the network, the possibility of private information leakage implied. Therefore, some corresponding information type (e.g., “MAC address”) should appear in the privacy policy as information that may be collected. Instead, the more broad information type “mobile identifiers”, which does not directly describe “MAC address” but is intuitively representative of it, appears in the policy. Without considering the hypernymy relation between “MAC address” and “mobile identifiers” (i.e., MAC address is a kind of mobile identifiers), an incorrect misalignment of omission by the policy would be detected (i.e., false positive). To remedy this, an ontology containing such relationships facilitates the detection of the hypernym in the policy. Thus, the false negative due to the use of a broader term in the policy is avoided, and the policy writer can be made aware of the more specific term “MAC address” for improved clarity and precision.

In order to support automated analysis of requirements, tools and techniques are needed to build and validate formal ontologies that encode what analysts know using their domain knowledge and experience. In this paper, we propose a methodology to create ontologies similar to the one shown in Fig. 1. In the next section, we discuss important background and terminology, before introducing the syntax-driven method to infer semantic relationships from information type phrases.

3. Background

In this section, we introduce the terminology and three different lexicons used throughout this paper.

3.1. Terminology

Hypernymy: a relationship between two noun phrases where the meaning of one phrase, called the hypernym, is more generic than the other phrase, called the hyponym, e.g., “device information” is a hypernym of “device identifier”.

Meronymy: a relationship between one phrase, called the whole, and a second phrase, which is a part of the whole, e.g., “device identifier” is a part of “device”.

Synonymy: a relationship between two noun phrases with a similar meaning or an abbreviation, e.g., “IP” is a synonym of “Internet protocol”.

Population Preferences: In psychology, preferences reflect an individual’s attitude toward one or more objects, including a comparison among objects [29]. In this paper, we evaluate the semantic relationships inferred by the syntax-driven method using preferences expressed by a population of web and mobile-app users (i.e., non-experts).

Expert-Inferred Relationships: Semantic relationships among information types identified by privacy experts, including the authors of this paper.

Lexicon: a collection or list of information type phrases.

Ontology: an arrangement of concept names in a graph in which terms are connected via edges corresponding to hypernymy, meronymy and synonymy relationships [30]. In this paper, we only consider information type names as concept names.

In this paper, we use the following formal representation for an ontology. An ontology is a knowledge base KB expressed using FL_D, a sub-language of the Attribute Language (AC) in Description Logic (DL). A DL knowledge base KB is comprised of two components, the $TBox$ and the $ABox$ [31]. The $TBox$ consists of terminology, i.e., the vocabulary (concepts and roles) of an application domain. The $ABox$ contains assertions about named individuals using this vocabulary. Each ground-truth ontology knowledge base KB (i.e., an ontology either constructed from populations preferences, or expert-inferred relationships and used as a gold standard for our method evaluation) only contains terminology, which we call the $TBoxT$.

The semantics of FL_D-concepts begins with an interpretation I that consists of a non-empty set A^I (the domain of the interpretation) and an interpretation function, which assigns to every atomic concept C, a
set $C \subseteq D$. The $TBox$ also contains terminological axioms that relate concepts to each other in the form of subsumption and equivalence, which we use to formalize hyponymy, meronymy, and synonymy. A concept C is subsumed by a concept D, written $T \vdash C \sqsubseteq D$, if $C \equiv D$ for all interpretations I that satisfy the $TBox$. We define meronymy relationship using a role called PartOf and subsumption relationship as follows: $C \sqsubseteq \exists$PartOf.D.

The concept C is equivalent to a concept D, written $T \vdash C \equiv D$, if $C \equiv D$ for all interpretations I that satisfy the $TBox$. Axioms of the first kind $(C \sqsubseteq D)$ are called inclusions, whereas axioms of the second kind $(C \equiv D)$ are called equalities [31]. Note that the equalities $C \equiv D$ can be rewritten as two inclusion axioms $C \subseteq D$ and $D \subseteq C$.

Morphological Variant:

A concept name that is a variant of a common lexeme, e.g., “device ID” is a morphological variant of “device”.

In the definitions above, we assume that noun phrases expressed in text have a corresponding concept and that the text describes one possible name for the concept. This relationship between the phrase and concept is also arbitrary, as noted by Saussure in his theory of the signifier, which is the symbol that represents a meaning, and the signified, which is the concept or meaning denoted by the symbol [32]. Peirce defines a similar relationship among sign-vehicles, objects, and interpretants [33].

Context-free Grammar:

A set of production rules, expressing the way that symbols of a language can be grouped and ordered together [30].

Semantic Attachments:

A set of rules that augment the production rules. These attachments are instructions that specify how to compute the meaning representation of a construction from the meaning of its constituents parts [30].

3.2. Lexicons

In this paper, we refer to three privacy policy lexicons, which contain a list of information type phrases that were manually extracted from privacy policies. We use the information types in these lexicons to infer semantic relationships through our method. In this section, we provide detailed information regarding these three lexicons presented in Table 1. Each lexicon is assigned to a unique ID and can be distinguished by (1) the information type that analysts were asked to extract from the source policies, (2) the app type governed by the policy (i.e., mobile or web apps); and (3) the domains predominantly supported by the apps. Given the diversity of information types, app types, and domains, these three lexicons represent a diverse cross-section of app behavior.

Lexicon L_1 was published by Hosseini et al. [11,13], and contains 356 platform-related information types (e.g., “IP address”) defined as “any information that the app or another party accesses through the mobile platform that is not unique to the app”. The information types were extracted from the data collection practices of 50 mobile app privacy policies [11,13]. These 50 policies were unrestricted by domain, and thus cover a wide range of domains, including gaming, finance, communication, music, productivity, social and entertainment, sports, and shopping, to name a few. This lexicon is available online [34].

Lexicon L_3 was published by Wang et al. and contains 491 user-provided information types (e.g., “user’s weight”, “credit card number”, and “sexual orientation”) defined as “any information that users explicitly provide to the app or other party” or “any information that the app or other parties collect or access that are unclear about whether the information is provided by the user or by automatic means” [16]. These types were extracted from the top 30 mobile apps in Google Play in finance (personal budget and banks sub-domains), health (personal health, insurance-pharmacy sub-domains), and dating (serious and casual dating sub-domains) domain. This lexicon is available online [34].

Finally, **Lexicon L_2** was published by Evans et al. and contains 1853 information types related to any data collection, use, retention, and sharing practice [14]. These types were extracted from 30 mobile and web app privacy policies across six domains (shopping, telecommunication, social networks, employment, health, and news). This lexicon is available online [34].

Domains further affect the types of information described in policies. In Table 2, we present the top 10 most frequent information types across each lexicon.

4. Related work

In this section, we review related work concerning the definition of ambiguity, tools and techniques to detect and resolve ambiguity, ontology in requirements modeling, and ontology in requirement analysis. Lastly, we summarize our observation over the related work and make our contribution explicit to the body of knowledge in requirements engineering domain.

4.1. Definition of ambiguity

According to IEEE Std 830-1998 [35], a requirement is ambiguous if it admits more than one interpretation. Harwell et al. [36] defines a requirement as unambiguous if different stakeholders with similar backgrounds give the same interpretation to it. Privacy policies contain privacy requirements that are subject to different interpretations between requirement engineers, policy authors, and end-users due to their background knowledge and experience. In general, ambiguity is widely categorized as linguistic ambiguity and RE-specific ambiguity [6]. According to Kamsties and Paech, a requirement is specifically RE ambiguous, if it allows several interpretations with respect to other requirements, the application domain (e.g., applicable standards, operational environment), and the system domain (e.g., conceptual models of software systems and their behavior) [6].

Berry and Kamsties distinguish four broad categories of linguistic ambiguity, including lexical, syntactic, semantic, and pragmatic ambiguity [8]. **Lexical ambiguity** occurs when a word has several meanings (e.g., homonymy and polysemy) [8]. **Syntactic ambiguity** occurs when a given sequence of words can be given more than one grammatical structure, and each has a different meaning (e.g., in compiler construction, syntactic ambiguity occurs when a sentence has more than one parse) [8]. **Semantic ambiguity** occurs when a sentence has more than one way of reading it within its context although it contains no lexical or syntactic ambiguity [8]. Semantic is concerned with context-invariant meaning. **Pragmatic ambiguity** occurs when a sentence has several meanings in the context in which it is uttered [8]. Pragmatics is concerned with context-dependent meaning. Berry and Kamsties also discuss two phenomena closely related to ambiguity, including vagueness and generalization [8]. A requirement is vague if it is not clear how to measure whether the requirement is fulfilled or not (e.g., fast response time, user-friendly). A requirement is general if it has continuum of possible interpretations, a general meaning that covers these readings is available, but borderline cases do not exit, and it can be made precise [6] (e.g., collection of device information). For subcategories and detailed examples, we urge the reader to refer to [6,8]. In another categorization by Massey et al. [9], generality of terms in RE is treated as part of lexical ambiguity.

Table 1

<table>
<thead>
<tr>
<th>Lexicon ID</th>
<th>Information types</th>
<th>App type</th>
<th>Domain(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>Platform</td>
<td>Mobile</td>
<td>Unrestricted</td>
</tr>
<tr>
<td>L_2</td>
<td>User-provided</td>
<td>Mobile</td>
<td>Finance, health, online dating</td>
</tr>
<tr>
<td>L_3</td>
<td>Any</td>
<td>Mobile & Web</td>
<td>Shopping, telecom., social media, employment, health, and news</td>
</tr>
</tbody>
</table>
4.2. Detection and resolution of ambiguity

Detection and resolution of ambiguity in natural language requirements has been the subject of studies in the requirement engineering community for decades. Lami et al. [37] present a tool, called QuARS, for analyzing natural language requirements. The tool allows the requirements engineers to perform an initial parsing of the requirements for automatically detecting potential linguistic defects that can determine ambiguity. The tool is composed of terms and linguistic constructions characterizing a particular defect. The categories of language defects detected by this tool does not contain generalization and differs from established ambiguity categories defined by [6,8,9].

Mich and Garigliano [40] calculate the ambiguity index of word as a weighted function of (1) the number of semantic meanings of and (2) the number of syntactic roles for the word. The weights depend on frequencies of occurrences for different meanings and roles in the language of the requirement statements [41]. Kiyavitskaya et al. [41] take into account the classification of ambiguity by Berry and Kamsties [8] and develop two free tools focused on (1) measuring lexical and syntactic ambiguities, and (2) identifying specific instances of pragmatic, software-engineering, and language-error ambiguities in sentences. The first tool analyzes the parse tree of a given requirement statement for structural issues and calculates the ambiguity index using the method proposed by [40]. The second tool applies parsing, part of speech tagging, and WordNet to identify instances of pragmatic, software-engineering, and language-error ambiguities. Nigam et al. [39] develop a tool to review requirements by identifying ambiguous words and provide the possible sources of wrong interpretation. The tool supports identification of lexical, semantic, syntactic, pragmatic ambiguity, and vagueness and language errors. This tool relies on part of speech tagging and set of regular expressions to identify ambiguity.

Lexicons play an important role in reducing ambiguity and improving the quality of specifications [46]. Boyd et al. proposed to reduce ambiguity in controlled natural languages by optimally constraining lexicons using term replaceability [47]. Our proposed method improves lexicicon development through automation to account for discovering new, previously unseen terms. By incorporating semantic relationships between terms, a lexicon can be expanded into an ontology. Bhattacharya et al. [12] introduce a theory of vagueness for privacy policy statements based on a taxonomy of vague terms derived from an empirical content analysis of 15 privacy policies. Their taxonomy is evaluated in a paired comparison experiment and results were analyzed to yield a rank order of vague terms in both isolation and composition. This theory predicts how vague modifiers to information actions and information types can be composed to increase or decrease overall vagueness.

Lexical ontologies, such as WordNet, are used in detecting ambiguity [41]. WordNet is a lexical ontology containing English words grouped into nouns, verbs, adjectives, adverbs, and function words [48, 49]. Within each category, the words are organized by their semantic

<table>
<thead>
<tr>
<th>Location</th>
<th>Info Type</th>
<th>Frequency</th>
<th>Location</th>
<th>Info Type</th>
<th>Frequency</th>
<th>Location</th>
<th>Info Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>41</td>
<td>Information</td>
<td>IP address</td>
<td>317</td>
<td>Information</td>
<td>IP addresses</td>
<td>21</td>
<td>Cookies</td>
</tr>
<tr>
<td>Browser type</td>
<td>21</td>
<td>Information</td>
<td>Browser type</td>
<td>200</td>
<td>Information</td>
<td>Browser type</td>
<td>41</td>
<td>Cookies</td>
</tr>
<tr>
<td>Internet protocol</td>
<td>16</td>
<td>Email address</td>
<td>Internet protocol</td>
<td>36</td>
<td>Personally identifiable information</td>
<td>Location</td>
<td>16</td>
<td>Name</td>
</tr>
<tr>
<td>Device identifiers</td>
<td>14</td>
<td>Health information</td>
<td>Device identifiers</td>
<td>27</td>
<td>Protected health information</td>
<td>Device identifiers</td>
<td>13</td>
<td>Protected health information</td>
</tr>
<tr>
<td>Device type</td>
<td>13</td>
<td>Information</td>
<td>Device type</td>
<td>21</td>
<td>Data</td>
<td>Location</td>
<td>12</td>
<td>Contact information</td>
</tr>
<tr>
<td>Device information</td>
<td>12</td>
<td>Personal identifiable information</td>
<td>Device information</td>
<td>20</td>
<td>Contact information</td>
<td>Device information</td>
<td>11</td>
<td>Personal identifiable information</td>
</tr>
<tr>
<td>Location</td>
<td>11</td>
<td>Personal identifiable information</td>
<td>Location</td>
<td>11</td>
<td>Personal identifiable information</td>
<td>Location</td>
<td>11</td>
<td>Personal identifiable information</td>
</tr>
</tbody>
</table>
relations, including hypernymy, meronymy, and synonymy [49]. WordNet is reported as the most utilized lexicon to support NLP-related RE tasks [50]. However, an analysis by Hosseini et al. [10] reveals that only 14% of information type phrases from a privacy policy lexicon are found in WordNet, mainly because the lexicon is populated with multi-word, domain-specific phrases. Therefore, finding an information type phrase can be a challenging task for requirement analysts. We aim to address this limitation and facilitate automated analysis of data requirements. Evans et al. [14] applied an extended set of 72 Hearst patterns to privacy policies to extract hypernymy pairs. Pattern sets are limited because they must be manually extended to address new policies. Hosseini et al. [13] proposed 26 regular expression patterns to parse the information types in lexicon \(L_1 \) (see Section 3) and to infer semantic relations based on their syntax to address generalization in privacy policy terminology. The discovered patterns fail to cover all the information types in lexicon \(L_1 \), and the approach requires extending the pattern set for new policies. To address this problem, we propose a context-free grammar to formally infer all the information types in \(L_1 \) with regard to pre-defined inference heuristics that are policy-independent.

4.3. Requirements modeling

Ontologies are a standard form for representing the concepts within a domain, as well as the relationships between those concepts in a way that allows automated reasoning [51]. Due to such benefits, prior work in RE has employed ontology in requirements formalization and modeling.

Gordon and Breaux [52] proposed a manual framework to reconcile and formalize regulatory requirements from multiple jurisdictions into a single standard of care. The framework preserves traceability so that a business analyst can trace observed similarities and differences from requirements to specific sentences and phrases in the law. This includes formalizing specific changes in generality across related requirements. Breitman and do Prado Leite describe how ontologies can be used to analyze web application requirements [17]. Breaux et al. use an ontology to identify conflicting requirements across vendors in a multi-stakeholder data supply chain [3]. Their proposed ontology was formalized for three apps (i.e., Facebook, Zynga, and AOL) and contains hierarchies for actors roles, information types, and purposes. Their work motivates the use of ontologies in requirements analysis, yet relies on a small set of policies and has not been applied at scale. Oltramari et al. propose using a formal ontology to specify privacy-related data practices [53]. The ontology is manually populated with practice categories, wherein each practice has properties, including information type. While the ontology formalizes natural language privacy requirements, there are no semantic relations formalized among information types, thus the ontology does not encode hypernymy. Humphreys et al. [54] propose a model to semi-automatically populate legal ontologies by extracting definitions, norms, and other elements of regulations semantic role labeling. This work emphasizes ontology reuse in knowledge management systems. In summary, Dermeval et al. [51] provide a systematic review of the literature in applications of ontologies in RE. Their findings provide an empirical evidence of benefits of using ontologies in RE activities both in industry and academy, to reduce ambiguity, inconsistency, and incompleteness of requirements.

4.4. Ontology application in requirement analysis

Ontologies have been applied in tracing requirements to data practices expressed in source code.

Zimmeck et al. proposed an approach to identify the misalignments between data practices expressed in privacy requirements and mobile app code [26]. The approach uses a bag-of-words for three information types: “device ID”, “location”, and “contact information”. For example, “device ID” is contained in the bag-of-words associated with device ID. Without an ontology, this approach cannot distinguish between persistent and non-persistent information types, which afford different degrees of privacy risk to users. Harkous et al. [55] introduces a framework for privacy policy analysis, called Polisis, which aims to present privacy policy information in two usable and scalable ways; the first is a graph that visualizes the flow of user data being collected, the reasons behind the collection, and the collection choices given to users; the second is a question-and-answer system, called PriBot, that is able to answer user questions over a privacy policy. To produce these presentations, a policy is first divided into small text fragments, called segments. These segments are then classified over 10 high-level classes and 122 fine-grained classes using word embeddings, producing a set of class-value pairs for the segment. This set of class-value pairs is then used to visualize the graph or answer questions. Through this approach, each segment of the privacy policy is mapped to information types from a pre-defined set captured by Wilson et al. [56]. This approach fails to extract the exact information type from the segment and increases the abstraction level associated with each segment through the mapping, which leads to ambiguity. This work also fails to consider the introduction of new information types which do not exist in the pre-defined set.

In contrast, Slavin et al. [11] and Wang et al. [16] identify app code that is inconsistent with privacy policies using a manually constructed ontology [10]. The approach overcomes the limitation of Zimmeck et al. [26] and Harkous et al. [55] and exemplifies the efficacy of ontologies for requirements traceability. However, the manual construction of ontologies is costly and lacks scalability due to the time spent by analysts to compare information types, and errors generated by analysts during comparison [10]. Our proposed automated method is an improvement on prior work to construct ontologies that account for semantic relationships between information types in privacy policies.

5. Syntax-driven ontology construction method

Our method for constructing ontology fragments is based on grounded theory [57], which is a qualitative inquiry approach that involves applying codes to data through coding cycles to develop a theory grounded in the data [58]. Based on this theory, we describe three applications in this paper: (1) codes applied to information types in Lexicon \(L_1 \) to construct a context-free grammar (see Section 5.3); (2) memo-writing to capture results from applying the grammar and its semantic attachments to infer relations from \(L_1 \) (see experiments \(E_{1,1} \) and \(E_{1,2} \) in Section 6); and (3) theoretical sampling to test the proposed method on information types in lexicons \(L_1 \) and \(L_3 \) (see experiments \(E_{1,2} \) and \(E_{1,3} \) in Section 6).

We now describe the overview of the syntax-driven ontology construction method as presented in Fig. 2. This figure is summarized as follows: in step 1, information types in a lexicon are pre-processed and reduced; in step 2, an analyst manually assigns semantic roles to the words in each reduced information type, a step that is linear in effort in the size of the lexicon; in step 3, a context-free grammar (CFG) and its semantic attachments are used to automatically infer morphological variants and candidate ontological relations.

Reproducibility. We now provide an example to illustrate the result of each step in a high-level format. Given an information type “mobile device identifiers”, in step 1, this information type is pre-processed and reduced to “mobile device identifier”; in the step 2, an analyst manually tags each word in the information type phrase. The result of this step is the information type phrase accompanied with a tag sequence “mobile device identifier-mp”. Finally, in step 3, the CFG and its semantic attachments are used to extract the following candidate relationships:

- “mobile device identifier” is a hyponym (kind) of “mobile information”.
“mobile device identifier” is a hyponym (kind) of “device identifier”.

“mobile device identifier” is a part of “mobile device”.

“device identifier” is a part of “device”.

“identifier” is a part of “device”.

“mobile device identifier” is a part of “mobile device”.

The production rules that comprise the CFG and that are introduced in this paper are used to formalize and analyze the syntax of a given information type. To infer semantic relations, we implement the rule-to-rule hypothesis [20] by mapping each production rule in the CFG to its semantic counterpart, presented using λ-calculus.

5.1. Lexicon reduction

In step 1, the information types from the input lexicon are reduced as follows: (1) plural nouns are changed to singular nouns, e.g., “peripherals” is reduced to “peripheral”; (2) possessives are changed to non-possessive form, e.g., “device’s information” is reduced to “device information”; and (3) suffixes “-related”, “-based”, and “-specific” are removed, e.g., “device-related” is reduced to “device”.

5.2. Semantic role tags

Given the reduced lexicon as input, step 2 consists of tagging each word in a phrase with one of five semantic roles: modifier (m), which describe the quality of a head word, such as “mobile” and “personal”; thing (t), which is a concept that has logical boundaries and can be composed of other things; event (e), which describe action performances, such as “usage”, “viewing”, and “clicks”; agent (a), which describe actors who perform actions or possess things; property (p), which describe the functional feature of an agent, place or thing such as “date”, “name”, “height;” and (x) which is an abstract tag indicating any general category of information, including “information”, “data”, and “details”, among others. In an information type ontology, the concept that corresponds to x (e.g., “information”) is the most general, inclusive concept in the hierarchy [13]. The roles are the result of grounded analysis on lexicon \(L_1 \) conducted by Hosseini et al. [13].

Part-of-speech (POS) is commonly used to tag natural language phrases and sentences [30]. Event words, for example, often correspond to noun-forms of verbs with special English suffixes (e.g., “usage” is the noun form of “use” with the suffix “-age”), and things and actors are frequently nouns. However, the analysis of lexicon \(L_1 \) shows that only 22% of tagged sequences can be identified using POS and English suffixes [13]. Therefore, we rely on manual tagging of words using five semantic roles by two analysts. The effort required for this task is linear in the size of lexicon, which means each new information type only needs to be tagged once.

The information type tagging is expressed as a continuous series of letters that correspond to the semantic roles presented with tag sequence \(\lambda \) (e.g., “information’’). The intuition behind step 2 in the overall approach is based on the observation that information types are frequently variants of a common lexeme.

5.3. Syntactic analysis of information types using context-free grammar

A context-free grammar (CFG) is a quadruple \(G = (N, V, R, S) \), where \(N, V, \) and \(R \) are the sets of non-terminals, terminals, productions, respectively and \(S \in N \) is the designated start symbol.

Step 3 (Fig. 2) begins by processing the tagged information types from the reduced lexicon using the CFG in Table 3. The CFG represents the antecedent and subsequent tags to infer morphological variants from a given information type. The grammar is yielded by applying grounded analysis to the tag sequences of all information types in lexicon \(L_1 \). Notably, the grammar distinguishes between four
The full table is published online [34]. We first introduce a semantic rule in production \(\rho\) symbol) in production \(\beta\). The semantic attachments for each production \(\alpha\). The semantic rule \(\beta\) is a constituent (terminal or non-terminal) \(\gamma\) of the production's right side. \(\lambda\) represents an abstraction with two lambda variables, where \(\lambda\) and \(\lambda\)-expressions.

In \(\lambda\)-calculus, functions are represented by symbolic notations called \(\lambda\)-expressions. Variables and constants are atomic constituents of \(\lambda\)-expressions. Complex \(\lambda\)-expressions can be built from variables based on their application and abstraction [59].

Unary function \(WordO F(y)\) maps a non-terminal to its tagged phrase sequence. For example, \(WordO F(Final)\) returns “device identifier-tp” in Fig. 4. In this example, \(Final\) refers to the left-side non-terminal of Modifier1.

\(Concat(y, z)\) is a binary function used to concatenate two tagged phrase sequences, for example \(Concat(mobile-m, information-x)\) produces “mobile information-\(mx\”).

\(SubVariant(y)\) is a higher-order function accepting other functions like \(Concat\) as an argument. It returns a list of variants that can be constructed using the input argument, e.g., \(SubVariant(mobile-tp)\) returns the following list of variants: \{mobile device identifier-\(mp\), device identifier-\(ip\), identifier-\(p\)\}.

\(IsInfo(x)\) is a unary function on a tagged phrase sequence, returning an empty list if the input sequence matches “information-x” and \(Eqv(x, information-x)\), otherwise. For example, \(IsInfo(data-x)\) returns \(Eqv(data-x, information-x)\), since “data-x” and “information-x” do not match.

\(KindOf(y, z)\), \(PartOf(y, z)\), and \(Eqv(y, z)\) are higher-order functions that map two tagged phrases to a single-element list containing a candidate hypernymy, meronymy, and synonymy axioms, respectively.

\(Map(f,\{E_1,\ldots,E_n\}) = \{(f)E_1,\ldots,(f)E_n\}\)

We now describe step 3 (Fig. 2) using the tagged information type “mobile device identifier-\(mp\)”. The tagged information type is first parsed using the grammar in Table 3. Its semantics are computed by visiting the nodes of the parse tree in Fig. 4 and applying the corresponding semantic attachments from Table 4 during a single-pass, top-down parse. Following this order, the semantics of production rule \(p1\) is mapped to the following \(\lambda\)-expressions, where \(l\) in \(p1.1\) refers to line 1 in Table 4:

\(p1.1\) represents an abstraction with two lambda variables, where \(y\) refers to the inherited tagged phrase from the right and top of the parse tree and \(w\) refers to the tagged phrase “mobile-\(w\)” read through the lexical analyzer. In this case, variable \(y\) refers to an empty string, since no tagged phrase precedes “mobile-\(w\)”. Therefore, the first \(\lambda\)-expression can be reduced to \(Final\).sem(“mobile-\(w\”)”). In this \(\lambda\)-expression, “mobile-\(w\)” is inherited by non-terminal \(Final\) in the parse tree. Based on the principle of compositionality, the semantics of a phrase depends on the order and grouping of the words in a phrase [19]. An unambiguous grammar like the CFG cannot infer all possible variants, such as “mobile device” and “device identifier”, by syntax analysis alone, because the input phrase “mobile device identifier” would require both left- and right-associativity to be decomposed into these two variants. We overcome this limitation by introducing an unambiguous right-associative
In this paper, we evaluate the syntax-driven method using two approaches:

1. Expert Evaluation: relations identified by experts with experience in privacy and data practices.
2. Non-Expert Evaluation: the preferences expressed by a population of web and mobile-app users (i.e., non-experts) toward the relationships between information types.

Fig. 5 depicts the overview of the method evaluation. Through this evaluation, we compare our method with expert and non-expert viewpoints. This comparison requires different ground truths. In the first evaluation, two ground truth sets (K B1 and K B2 in Fig. 5) are constructed by experts that review the information types and identify relations using seven heuristics (see Section 6.1). In the second evaluation, two new ground truth sets (K B3 and K B4 in Fig. 5) are constructed through a survey (see Section 6.2), capturing the preferences that reflect common population attitudes toward semantic relations among types that share at least one common word (e.g., “device identifier” and “identifier”). The experts initiate their comparisons by scanning the lexicons visually and applying predefined heuristics, whereas the preferences evaluation studies a complete subset of comparisons that have an above average chance of being related. In both approaches, a complete analysis of all possible pairs for lexicon of size n requires \(\frac{\text{size} \times \text{(size}-1)}{2} \) comparisons, which is not feasible for large n.

In summary, we answer the following research questions with regard to the syntax-driven method.

RQ1: How much and to what extent does the method generate the relations identified by experts using a set of pre-defined heuristics?

RQ2: How much and to what extent does the method generate relations compared to population preferences?

RQ3: How reliable is the method when applied on information types extracted from various data practices regarding privacy policies of mobile or web-based apps in various domains?

In this section, we report the results of four experiments to address the research questions. We address research questions RQ1 by conducting two experiments \(E_1 \) and \(E_2 \) on lexicons \(L_1 \) and \(L_2 \) and their manually-constructed ontologies by experts. The results from these two experiments are discussed in Section 6.1. RQ2 aims to evaluate the method using preferences of mobile and web users population. Experiments \(E_1 \) and \(E_2 \) discussed in Section 6.2 address this research question. Research question RQ3 is addressed by examining the results of the above replications: experiments \(E_1 \) and \(E_2 \) aim to replicate the discovery of relationships extracted by experts and non-experts, respectively, while allowing the information type scope and domains to vary from the first set of experiments \(E_1 \) and \(E_2 \).

Motivation for the usage of three different lexicons: We design experiments \(E_1 \) and \(E_2 \) to evaluate the syntax-driven method and address RQ1 and RQ2 using lexicon \(L_1 \). However, the method is constructed using lexicon \(L_1 \), raising doubts regarding the validity of this evaluation. To provide an unbiased evaluation of the method, we design experiments \(E_1 \) and \(E_2 \) using lexicons \(L_2 \) and \(L_3 \) for ground truth construction to evaluate the method and further address research questions RQ1 and RQ2. Further, we utilize these two lexicons (i.e., \(L_1 \) and \(L_3 \) in evaluating our method’s reliability on unseen information types from various data practices (e.g., data collection, usage, and sharing) across different app categories (e.g., shopping, finance, telecommunication, social media, etc.). Therefore, through experiments \(E_1 \) and \(E_2 \), we also evaluate the method’s reliability and address research question RQ3.
7 heuristics that were discovered through grounded analysis of five relationships. On their memory of information types they have seen as they discover synonymy relations. Experts can search by keyword, and largely rely for types with which they can create a hypernymy, meronymy, or expert scans the alphabetical list of the information types, looking for properties (e.g., name, address).

6.1. Experts inferred relations

In this section, we address RQ1 by comparing the syntax-driven method with expert-constructed ontologies created from lexicons L_1 and L_2. Experts have more extensive technical knowledge that can be used to discover relationships between information types that non-experts would otherwise miss. In addition, because expert-constructed ontologies often involve only a few experts during construction, chance-corrected statistics, such as Kappa, can be used to reduce disagreements among which relationships are valid interpretations.

Oreganisation. We first describe a manual approach used to construct an ontology by privacy experts. The ontology constructed through this manual approach is used as a gold standard (i.e., ground truth) and we will compare this ontology with the semantic relations inferred by our syntax-driven method. Secondly, we explain our first experiment $E_{1.1}$ where our privacy and data practices experts utilize the manual approach to create a ground-truth ontology on the list of information types in lexicon L_1. Through this experiment, we evaluate the automatically inferred relationships from lexicon L_1 by our syntax-driven method with the ground-truth ontology and report the results of this comparison. Finally, we describe our second experiment $E_{1.2}$, where the experts utilize the manual ontology construction on lexicon L_2 to generate a ground-truth ontology. Further, we compare the inferred relationships from lexicon L_2 through our syntax-driven method with the ground-truth ontology and report the results.

6.1.1. Ground-truth ontology construction method

We now explain the manual method used by experts to construct ground-truth ontologies. Manual ontology construction begins with an initial flat ontology, wherein each information type from the lexicon is subsumed by the T concept and no other relationships exist between information types. Each expert is provided a copy of the initial ontology, which is loaded into the ontology editor Protege. Next, each expert scans the alphabetical list of the information types, looking for types with which they can create a hypernymy, meronymy, or synonymy relation. Experts can search by keyword, and largely rely on their memory of information types they have seen as they discover relationships.

When an expert finds a prospect relationship, they apply one of seven heuristics that were discovered through grounded analysis of five privacy policies [10] and which are shown with corresponding axioms in Description Logic:

- **Hypernymy**: $C \sqsubseteq D$, which means concept C is a kind of "authentication information".
- **Meronomy**: $C \text{ Part Of } D$, which means concept C is a part of concept D, e.g., "email message" is a part of "email".
- **Modifiers**: $C_1, C_2 \sqsubseteq C_3$ and, $C_1, C_2 \subseteq C_1_{ \text{information}}$, which means concept C_1 is modifying concept C_2, e.g., "mobile phone number" is a kind of "phone number" and "mobile information".
- **Plural**: $\exists D$, which means concept C is a plural form of concept D, e.g., "addresses" is equivalent to "address".
- **Synonym**: $C \equiv D$, which means concept C is a synonym of concept D, e.g., "geo-location" is equivalent to "geographic location".
- **Thing**: $C_1 \equiv C_1_{ \text{information}}$, when concept C has logical boundaries and can be composed of other concepts, e.g., "name" is equivalent to "name information".
- **Event**: $C_1 \equiv C_1_{ \text{information}}$, when concept C describes an event, e.g., "usage" is equivalent to "usage information".

Finally, the expert-constructed ontologies are exported to a comparison table in which chance-agreement is measured using Fleiss’ Kappa [69]. To export the relations, an algorithm extracts each expressed and inferred relationship between two information types using the HermiT reasoner. This yields a table row where a relationship assigned to an information type pair appears in one column per expert. Wherever a disagreement exists (i.e., the experts identified different relationships) the experts will review their assigned relations and discuss their disagreements with the other expert. This includes discovering missed relationships, as well as learning about new technical information to support a relationship. After the reconciliation process, the agreement is recalculated to measure the improvement due to reconciliation.

With regard to evaluation, the relations inferred by the syntax-driven method are compared to the complete entailment of the expert-constructed ontology, which includes relations inferred using the transitive closure of hypernymy. A relation found by the method is a true positive (TP), if it is logically entailed by the ontology, otherwise, that relation is a false positive (FP). If both the method and the ontology do not include a relation between two types, then that relation is counted as a true negative (TN). If the method does not find a relation that was found by an expert, then that relation is a false negative (FN). Precision is computed as TP/(TP+FP), and recall is computed as TP/(TP+FN).

2 https://protege.stanford.edu/.

We now describe the two experimental results using ontologies built from the two lexicons L_1 and L_2. In these experiments, we report results for the entire expert-constructed ontology, and separate results from the ontology in which information types share at least one word. This latter result is included to support performance comparisons with the population preferences study reported in Section 6.2.

6.1.2. Experiment $E_{1,1}$: Lexicon L_1

Inferred relationships through the syntax-driven method. Lexicon L_1 contains 356 platform information types which are used to develop the context-free grammar (CFG) in Section 5.3. These information types are reduced by applying reduction strategies (see Section 5.1) to yield 347 reduced information types. Next, two analysts (i.e., the first and second authors) assign role tags to the information types as described in Section 5.2 in two consecutive rounds. The measured degree of agreement after the first round of tagging yields a Fleiss’ Kappa of 0.720 and it is increased to 0.931 after reconciling disagreements in the second round [60]. The 347 reduced tagged information types are available online [34]. For the information types that share at least one word, the syntax-driven method using CFG and semantic attachments yield 4593 relations between information types, which we published here [34]. The process of inferring candidate relations from lexicon L_1 is shown in Fig. 2. In this figure, L_1 candidate relations is an output artifact that we use as an input artifact in Fig. 5.

Ground-truth ontology. To construct the ground truth for evaluation, two experts (the first and second authors) individually produce two ontologies using the methodology described above, which consist of 431 and 407 axioms, respectively. Table 5 is a snapshot of relationships assigned to information type pairs by two experts extracted from the two ontologies before any reconciliation; wherein “Hypernymy” means the LHS type is a superclass of the RHS type, “Hyponymy” means subclass of, “Equivalent” means equivalence to, “Whole” means the LHS is a whole that contains the LHS type as a part, “Part” means the LHS type is part of RHS type, and “Unrelated” means no relationship.

The first comparison of the two ontologies yields 321 differences measured by a 0.233 Fleiss Kappa. After two rounds of reconciliation processes, the Kappa is increased to 0.888. We utilize the reconciled version of the ontology generated by the first expert as the ground-truth ontology for experiment $E_{1,1}$, that we call \hat{K}_{B_1}. We list 67,289 information type pairs from K_{B_1} that are either related (i.e., hypernymy, transitive hypernymy, meronymy, and synonymy relationships) or unrelated (i.e., two information types that have no logical relationships) [34]. The statistics regarding the number of hypernymy, transitive hypernymy, meronymy, and synonymy relations, along with the unrelated pairs in K_{B_1} is presented in Table 6. Among these pairs, we select a subset of K_{B_1}, with the information type pairs that share at least one common word (e.g., “device” and “device identifier”). Consequently, relations between information types that rely on privacy policies’ contextual semantics and experts’ tacit knowledge are ignored. For example, experts identified a hypernymy relationship between “phone” and “device”. However, inferring any relationship between “phone” and “device” is out of the scope of our syntax-driven method and requires additional semantic knowledge regarding these two terms. Therefore, to provide a sound comparison considering the scope of our syntax-driven method, we introduce \hat{K}_{B_1}, which contains a subset of K_{B_1} information type pairs that share at least one common word. We evaluate the inferred relations through the syntax-driven method with the relations in \hat{K}_{B_1}. Through this evaluation, 351 of the related pairs in \hat{K}_{B_1} cannot be logically entailed in the relations inferred through the syntax-driven method. We compute precision and recall for the syntax-driven method, which is presented in Table 7. To further investigate the FNs that cannot be inferred using the syntax-driven method, we conduct an open coding study on FNs which is presented in Section 7. Finally, we compare the results of our method to the previously proposed ontology construction method using 26 regular expression patterns reported by Hosseini et al. [13]. These patterns are used to parse the information types in lexicon L_1, and to infer semantic relations based on their syntax. However, the discovered patterns fail to cover all the information types in lexicon L_1 and the approach requires extending the pattern set for new policies. Table 7 also presents the evaluation metrics for the relations inferred through the 26 regular expression patterns when compared with relationships in K_{B_1}. Our method shows an improvement on precision and recall compared to the 26 regular expressions.

6.1.3. Experiment $E_{1,2}$: Lexicon L_2

RQ3 aims to evaluate the reliability of the syntax-driven method when applied on information types extracted from various data practices regarding privacy policies of mobile or web-based apps in various domains. To address RQ3, we design a second experiment with respect to expert-constructed ontologies.
Inferred relationships through the syntax-driven method. This experiment uses a previously published lexicon \(L_2\) containing 491 user-provided information types extracted from collection data practices of 30 finance, health, and dating mobile app privacy policies [16]. As shown in Fig. 5, in step 1, we reduce the information types using the reduction strategies in Section 5.1, yielding a total number of 464 reduced information types. In step 2, two analysts (i.e., the first and second authors) apply role tagging (see Section 5.2) on the information types in two consecutive rounds. The degree of agreement is measured after each round, resulting in Fleiss’ Kappa 0.656 and 0.878, respectively [60]. Given the reduced tagged information types as the input to step 3, the syntax-driven method yields 5044 relations between information types that share at least one word, which is published here [34]. This process results in \(L_2\) candidate relations in Fig. 5.

Ground-truth ontology. In this experiment, we utilize an ontology manually built from lexicon \(L_2\) by privacy experts as the ground truth. Two experts individually produce two ontologies using the methodology described above, which consist of 2590 and 2791 axioms, respectively. Table 8 is a snapshot of relationships assigned to information type pairs by two experts extracted the two ontologies before any reconciliation. Prior to any reconciliation, the first comparison of the ontologies yields Fleiss’ Kappa of 0.590. After reconciliation the Kappa is increased to 0.836 [16,60].

We utilize the reconciled version of the ontology constructed by the first expert as the ground truth expert-constructed ontology for lexicon \(L_2\), which we call \(\hat{K}_{B_2}\). This manually constructed ontology can be retrieved here [34]. We list 367,748 information type pairs from \(K_{B_1}\) that are either related (i.e., hypernymy, transitive hypernymy, meronymy, and synonymy relationships) or unrelated (i.e., two information types that have no logical relationships) [34].

The statistics regarding the number of hypernymy, transitive hypernymy, meronymy, and synonymy relations, along with the unrelated pairs in \(K_{B_1}\) are presented in Table 9. Among these pairs, we select a subset of \(K_{B_1}\) with the information type pairs that share at least one common word (e.g., (account balance, account contact information)). This subset of \(K_{B_1}\), called \(\tilde{K}_{B_1}\), contains 1961 information type pairs [34]. Table 9 also presents the number of pairs per each category for \(K_{B_1}\) in comparison with \(\tilde{K}_{B_1}\).

Evaluation. The results of the second experiment \(E_{1,2}\) presented in Table 10 assess the method’s reliability and address RQ3. We first evaluate the ontology fragments inferred by the syntax-driven method against all 367,748 pairs in \(K_{B_1}\). Similar to experiment \(E_{1,1}\), the evaluation exhibit high precision and low recall due to the number of pairs in \(K_{B_1}\) that do not share any common words.

We also evaluate the syntax-driven method and the inferred ontology fragments using \(\tilde{K}_{B_1}\). We find 44 of the related pairs in the \(\tilde{K}_{B_1}\) that cannot be logically entailed in the ontology fragments inferred through the syntax-driven method. We compute precision and recall for the syntax-driven method, which is presented in Table 10. Similar to experiment \(E_{1,1}\), we investigate relations identified as FN by conducting an open coding study, which is presented in Section 7. In comparison to experiment \(E_{1,1}\), lexicon \(L_2\) yields a higher recall by 0.353, with nearly equivalent precision. Finally, we compare the results of our method to the previously proposed ontology construction method using 26 regular expressions reported by Hosseini et al. [13]. Our method outperforms the 26 regular expression patterns, by decreasing the number of FNs and improving the recall significantly.

6.2. Population preferences

In this section, we describe the design of two experiments (i.e., \(E_{1,1}\) and \(E_{2,2}\)) to address RQ2. These experiments compare the results from the syntax-driven method to ground truths consisting of population preferences, which are preferences from non-experts about whether two information types are related.

Organization. We first describe our general survey design published on Amazon Mechanical Turk (AMT) to capture users’ preferences and interpretations toward the relationships between information types. Users’ preferences (i.e., relationships between information types) are then analyzed and formalized using DL axioms to construct ground-truth ontologies. Secondly, we describe experiment \(E_{2,2}\), where we compare a ground-truth ontology built upon information types in lexicon \(L_1\) with the relationships automatically inferred by our syntax-driven method. We then report the result of this comparison. Finally, we describe experiment \(E_{2,2}\), where we compare a ground-truth ontology built upon information types in lexicon \(L_1\) with the relationships automatically inferred by our syntax-driven method. We then report the result of this comparison.

6.2.1. Ground-truth ontology construction method

In this survey, participants are asked to choose a relation for pair \((A, B)\) from one of the following six options [13]:

\(s\): A is a kind of B, e.g., “mobile device” is a kind of “device”.
\(S\): A is a general form of B, e.g., “device” is a general form of “mobile device”.
\(P\): A is a part of B, e.g., “device identifier” is a part of “device”.
\(W\): A is a whole of B, e.g., “device” is a whole of “device identifier”.
\(E\): A is equivalent to B, e.g., “IP” is equivalent to “Internet protocol”.
\(U\): A is unrelated to B, e.g., “device identifier” is unrelated to “location”.

Each response is recorded as a participant preference for the chosen relation. Participants are only asked to compare information types that share at least one word.

Unlike an expert-based ground truth that assumes one or two viewpoints define truth, a population-based ground truth must reconcile different, even conflicting viewpoints. Diverse participant experiences can lead participants to perceive different information type senses and...
to assign different semantic relations to the same pair: e.g., “mac” can be construed to mean either a MAC address for Ethernet-based routing, or a kind of computer sold by Apple Inc. In another example, the information type “email” can refer to three different senses: a service or program for sending messages; a message to be sent via the SMTP protocol; or a person’s email address, which is the recipient address of an email message. Therefore, participants may conclude either that “email address” is a part of “email” or is equivalent to “email”, which are both valid interpretations. To avoid excluding valid interpretations, we build a multi-viewpoint ground truth that accepts multiple, competing interpretations [13].

In this experimental design, valid interpretations for a pair are those that the observed number of responses per category exceeds the expected number of responses in a Chi-square test, where \(p < 0.05 \). This threshold means that there is at least a 95% chance that the elicited response counts are different than the expected counts [13]. The expected response counts for a relation are based on how frequently participants choose that relation across all participant comparisons, which is the probability that a participant chooses a relation independent of the information types being compared. With this definition of valid interpretation, the multi-viewpoint ground truth is constructed as follows: for each surveyed pair, we add an axiom to the ground truth for a given relation, if the number of participant responses is greater than or equal to the expected Chi-square frequency for that pair and relation; except, if the number of unrelated responses exceeds the expected Chi-square frequency, then we do not add any axioms.

The above survey design is used to build two ground truths upon lexicon \(L_1 \) and \(L_2 \), which are used to conduct two experiments \(E_{2,1} \) and \(E_{2,2} \), respectively. Experiment \(E_{2,1} \) aims to answer RQ2 by comparing the syntax-driven method with population preferences. Experiment \(E_{2,2} \) serves as a replication in which the information types and domains vary, but wherein the standard of using population preferences is preserved. Thus, experiment \(E_{2,2} \) on lexicon \(L_1 \) is also used to address RQ3 regarding method reliability.

6.2.2. Experiment \(E_{2,1} \): Lexicon \(L_1 \)

To address RQ2 and evaluate the syntax-driven method against population preferences for lexicon \(L_1 \), we published a population preference study and constructed a ground-truth ontology [34] using valid interpretations produced using survey design and analysis procedure described above. We refer to this ground-truth ontology as \(KB_{2,1} \) throughout the paper.

Inferred relationships through the syntax-driven method. As mentioned in experiment \(E_{1,1} \) (see Section 6.1), Lexicon \(L_1 \) contains 356 platform information types that are used to develop our context-free grammar (CFG) in Section 5.3. We follow the similar approach described in experiment \(E_{1,1} \) Section 6.1 that yields 4593 relations between information types in \(L_1 \). The process of inferring candidate relations from lexicon \(L_1 \) is shown in Fig. 2. In this figure, \(L_1 \) candidate relations is an output artifact that we use as an input artifact in Fig. 5.

Ground-truth ontology. The survey is conducted using 2252 information type pairs obtained from \(L_1 \), wherein each pair consists of information types that share at least one word in the reduced version of lexicon \(L_1 \). These pairs are also previously used in \(KB_{2,1} \) for experiment \(E_{1,1} \). To identify relationships between information types in each pair, we recruit participants from AMT, where each participant had completed over 5000 HITs, had an approval rating of at least 97%, and was located within the United States [13]. Overall, we recruit 30 participants to provide one preferred relationship for each information type pair. This survey results in the ground-truth ontology \(KB_{2,1} \) for this experiment.

Evaluation. We compare the relations inferred by the syntax-driven method with the relations in \(KB_{2,1} \). An inferred relation is a true positive (TP), if it is logically entailed by the \(KB_{2,1} \), otherwise, that relation is a false positive (FP). Overall, 979 inferred relations are logically entailed in \(KB_{2,1} \). We use logical entailment to identify TPs, because subsumption is transitive and whether a concept is a hypernym of another concept may rely on the transitive closure of that concept’s class relationships in \(KB_{2,1} \). We only find two inferred relations as FPs. An unrelated information type pair in \(KB_{2,1} \) is considered a true negative (TN), if we cannot match any inferred relations with those pairs. We find 805 pairs in \(KB_{2,1} \) that are TNs. We count as false negatives (FN) all pairs in \(KB_{2,1} \), which are not inferred by the method. We find 466 pairs in \(KB_{2,1} \) that are not inferred by the method.

We compute Precision = TP/(TP+FP) and Recall = TP/(TP+FN) for the syntax-driven method based on CFG and semantic attachments, presented in Table 11. In addition, we include results previously reported by Hosseini et al. in which an ontology was constructed from \(L_1 \) using 26 regular expressions over a shallow typology [13]. The new method outperforms the 26 regular expressions by decreasing the number of FNs and thus improving recall by 0.108.

6.2.3. Experiment \(E_{2,2} \): Lexicon \(L_3 \)

RQ3 asks about the method’s reliability, which we address by conducting experiment \(E_{2,2} \) using population preferences.

Inferred relationships through the syntax-driven method. For this experiment, we acquire lexicon \(L_3 \), that contains 1853 information types related to any data collection, use, retention, and sharing practices, extracted from 30 mobile and web app privacy policies across six domains (shopping, telecommunication, social networks, employment, health, and news) [14]. As shown in Fig. 5, in step 1, we pre-process 1853 information types in lexicon \(L_3 \) using the strategies mentioned in Section 5.1, yielding 1693 information types [34]. Step 2 involves manual effort for semantic tagging. During this step, two analysts (i.e., the first and second authors) individually assign tags to the reduced information types in \(L_3 \). The inter-rater agreement for the assigned tags is calculated using Fleiss’ Kappa co-efficient. The comparison results in 518 disagreements with Kappa = 0.704. After reconciling the disagreements, Kappa is increased to 0.917 and we randomly select tag assignments from one of the analysts. In step 3, the tagged information types are parsed using the context-free grammar (CFG), yielding \(L_3 \)-candidate relations as an output artifact of this process.

Ground-truth ontology. To address RQ3 on method reliability, we develop a ground truth for relations in \(L_3 \). Consistent with our prior experiments, we select information type pairs that share at least one word, yielding 1,466,328 pairs that are down-sampled using strata based on tag sequences as follows:

Phase A: Each information type pair is mapped to their respective tag sequence pair, e.g., pair ‘mobile device, device name’ is mapped to \((mt, tp)\), yielding 974 unique tag sequence pairs, which we call a single stratum.

Phase B: Proportional stratified sampling is used to draw at least 2000 samples from all strata with the stratum size range 1–490. The wide range in stratum sizes implies unbalanced strata; e.g., a stratum that contains 1–3 pairs when divided by the total number of information type pairs yields zero, which would then be excluded from the sampled dataset. Therefore, we select all the pairs from stratum with size one to ensure complete coverage. For stratum of size two and three, we

<table>
<thead>
<tr>
<th>Table 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>(E_{2,1})</td>
</tr>
<tr>
<td>(E_{2,2})</td>
</tr>
</tbody>
</table>
randomly select one information type pair. For the remaining stratum with sizes greater than three, sample sizes are proportional to the stratum size, yielding one or more pairs per stratum. For each stratum, the first sample is drawn randomly. To draw the remaining samples, we compute a similarity distance between the already selected pairs and remaining pairs in each stratum: First, we create a bag-of-lemmas by obtaining word lemmas in the already selected pairs. In each stratum, we select the pairs that contain the least common lemmas with the bag-of-lemmas. We update the bag-of-lemmas after each selection by adding the lemmas of the selected pairs. This strategy ensures the selection of pairs with lower similarity measure, resulting in a broader variety of words in the sampled set.

Finally, we ensure that each tag sequence is represented by at least one sampled item, and that sequences with a larger number of examples are proportionally represented by a larger portion of the sample. This final assurance increases the initial sample size of 2000 to the final size of 2283 samples from the original set of 1,466,328 phrase pairs. Our final assurance increases the initial sample size of 2000 to the final size of 2283 samples from the original set of 1,466,328 phrase pairs. Our samples contain 1138 unique information types from Lexicon L_3.

We recruit 30 qualified AMT participants following the criteria mentioned in Section 6.1. These participants receive the same survey prompts described in E_2. Using the survey results, we construct a multi-viewpoint ground-truth ontology containing 2283 semantic relations [34]. We refer to this ontology as KB_{L_3} throughout this paper.

Evaluation: The results of applying the syntax-driven method to the sampled information types from L_3 yields 21,745 inferred relations [34]. To compute precision and recall, we compare the inferred relations with the multi-view KB_{L_3} using the same procedure described in experiment E_2. Overall, the method correctly identifies 1686 of the 2283 relations in KB_{L_3}. In comparison to E_2, the lexicon L_3 yields a higher recall by 0.238 with an equivalent precision. Overall, the method’s precision remains high with few FPs, however, recall can vary by as much as 0.238 depending on the dataset. We also compare the inferred relations using 26 regular expressions [13] with KB_{L_3}. The performance measures in Table 12, suggest that our syntax-driven method reduces the number of FNs, thus improving recall by 0.292.

7. Limitations

In this section we discuss limitations of the work by analyzing false negatives. While the syntax-driven method affords high precision, the low recall presents a limitation of the approach. To understand this limitation, we open code the false negatives (FNs) for all four experiments (i.e., E_{11}, E_{12}, E_{21}, and E_{22}) and identify four explanations for this limitation. The four explanations are as follows.

(1) Tacit Knowledge: The method solely relies on syntax and infers semantic relations between information types that share at least one common word (e.g., “device identifier” and “identifier”). Consequently, relations between information types that rely on privacy policies’ contextual semantics and experts’ tacit knowledge are ignored. For example, the hyponymy relation between “mobile phone model” and “mobile device model” requires the knowledge that “phone” is a hyponym (kind) of “device”. In another example, the hyponymy relation identified by non-experts between “crash events” and “device event information” requires knowing that a crash is a software or hardware failure on a device, which is tacit knowledge that our method lacks.

(2) Parse Ambiguity: The syntax-driven method analyzes information types by grouping words from the right and left using the CFG and inherited variants in semantic attachments, respectively. For example, the experts identified a hyponymy relation between “mobile device unique device ID” and “mobile device ID”. However, applying our method on the given information type “mobile device unique device ID” would not infer “mobile device ID” as a variant. In another example, an equivalence relation identified by non-experts between “device unique identifier” and “unique device identifier” would be inferred as two kinds of “device identifier”, but not as equivalent concepts.

(3) Role Suppression: Experts and non-experts may ignore the roles regarding modifiers, events, and properties in information types, which results in relations that cannot be inferred by our method. For example, experts identified a hyponymy relation between “coarse location” and “actual location”; ignoring “coarse” and “actual” that modify the term “location”. In another example, experts identified a hyponymy relation between “device ID” and “access device”, ignoring the role of “access” in “access device”. Further, non-experts identified “actual location” and “approximate location” as equivalent information types in population preference studies.

(4) Unjustifiable: Some information type pairs and their relations in the ground truths of four experiments cannot be justified by our knowledge. For example, experts identified “contact list” as a synonym of “contact entry”. In another example, “unique browser” is identified as a kind of “unique application number” by the experts. In another example, non-experts identified “general demographic information” as a kind of “general geographic information” and “mobile device type” is identified as a kind of “mobile device unique identifier”.

Table 13 depicts the result of our analysis on the FN relationships that cannot be identified using the syntax-driven method for four experiments. This table shows the number of relations that fall in each coding category. To summarize, the majority of FNs in all four experiments belong to the “tacit knowledge” coding category, which shows the limitation of the syntax-driven method to infer relations that rely on privacy policy context, experts’ domain knowledge, and humans’ general knowledge of natural language.

8. Threats to validity

In this section we discuss threats to validity of the work.

Internal Validity- Internal validity concerns whether the inferences drawn from the experiments are valid. The relations inferred by the syntax-driven method depend on reliable labeling of information types by analysts (see Section 5.2). Changes in tags affect the performance of the method when compared to a ground truth.

To understand the effect of labels on the inferred relations by the syntax-driven method, we analyze the FNs for experiments E_{11} and E_{21} through a second-cycle coding of the “Tacit Knowledge” category (see Section 7). Recall that both E_{11} and E_{21} are organized using lexicon L_1 and the syntax-driven method is the result of grounded analysis on the role tagged information types in this lexicon. Through this analysis, we observed a potential explanation for why participants (i.e., experts and non-experts) prefer a relation that differs from our results. As an example, the terms in “application software” are tagged with the sequence t_t, which is used to entail that “software” is part of an “application” by the syntax-driven method. However, we believe that participants recognize that “application software” is a single entity or thing (tag sequence t_t). We also believe this explanation applies to 20 information types in lexicon L_1. In summary, semantic ambiguity in tokenization and tagging can result in changes to the inferred relations, which is a shortcoming of the method. To minimize the effects of this internal threat, the information types in lexicons L_1, L_2, and L_3 are tagged by two analysts (the first and second authors). The reliability of
the agreement between analysts when assigning the role tags is measured using Fleiss Kappa. Further, the ground-truth ontology KB_{1} for experiment $E_{1,1}$ is constructed by two experts, i.e., the first and second authors of this paper. The ground-truth ontology $KB_{1,2}$ for experiment $E_{1,2}$ is a dataset previously published by our group [16]. The experts for $KB_{1,2}$ are the first author of this paper and the second author of [16]. The reliability of the agreement between experts when identifying semantic relationships between information types is measured using Fleiss Kappa. Finally, we acknowledge that our proposed method can be subject to researcher bias since the ground-truth ontologies in $E_{1,1}$ and $E_{1,2}$ are constructed by our research group.

External Validity: External validity concerns the extent to which the results generalize beyond the experimental setting. The syntax-driven method is constructed using lexicon L_{1}, which contains platform-related information types defined as “any information that the app or another party accesses through the mobile platform that is not unique to the app” [11]. The information types are extracted from collection data practices of 50 mobile app privacy policies [11,13]. We design experiments $E_{1,1}$ and $E_{2,1}$, to evaluate the method on lexicon L_{1}. To study generalizability beyond lexicon L_{1} and reduce threats to external validity, we utilize lexicons L_{2} and L_{3} to evaluate and conduct experiments $E_{1,2}$ and $E_{2,2}$. Lexicon L_{2} covers user-provided information from mobile apps in finance, health, and dating domains, whereas lexicon L_{3} covers information types related to collection, usage, retention, and transfer data practices, extracted from web app privacy policies in shopping, telecommunication, social networks, employment, health, and news domains [14]. The syntax-driven method infers relations from L_{2} with 0.800 precision and 0.840 recall in experiment $E_{1,2}$, when compared to information types that share at least one word in $KB_{1,2}$. In experiment $E_{2,2}$, the syntax-driven method results in 0.998 and 0.915 precision and recall, respectively, when compared to the population preferences for lexicon L_{3}. Experiments $E_{1,2}$ and $E_{2,2}$ suggest that the method generalizes best for general information types than for platform information types.

Reliability: Reliability indicates that the researcher’s approach is consistent across different researchers and different projects [61]. To ensure the reliability of our research, we measure and report the intercoder agreement in three ways [62]: (1) the Kappa for information type role tagging; (2) the Kappa measured for the expert-constructed ontologies; and (3) the Chi-square test used to threshold population preferences.

9. Discussion

Privacy policies contain ambiguous, general, and vague terminology, making requirements elicitation from data practices a challenging task. Our methodology provides requirements analysts with reusable ontologies that formalize semantic relations between ambiguous, general, and vague information types in privacy policies. However, such research poses fundamental challenges due to the problem’s nature that requires systematic validation. In the following subsections, we provide brief responses to research questions, address the main challenges in this research, and provide lessons learnt.

9.1. Ontology construction methods in practice

To the best of our knowledge, our work is the first attempt to address ambiguity, generality, and vagueness by automatically inferring semantic relations, such as hypernymy, meronymy, and synonymy between information types in privacy policies. Further, we formalize the representation of these relationships into an ontology, which have been previously used to identify privacy violations in mobile applications [11,16]. Prior work to construct ontologies discovered seven heuristics that can be manually applied to infer semantic relations [10]. We build upon this method in Section 6.1.1 by constructing ground-truth ontologies $KB_{1,1}$ and $KB_{1,2}$ that are used in experiments $E_{1,1}$ and $E_{1,2}$. Consequently, the syntax-driven method described in this paper has only been shown to infer fragments of manually-constructed ontologies, in which the related information types share at least one word. Considering the manual and syntax-driven methods, we pose two questions for discussion. First, how do the two methods compare considering the time and manual labor required to construct an ontology? Secondly, what percentage of an ontology can be automatically generated using the proposed method?

To address the first question, we note that the manual method requires comparing paired information types by at least two analysts. Therefore, a complete analysis of n information type requires $\binom{n}{2}$ comparisons. The average time for a pair comparison is reported at 11.72 seconds [13], which makes the task tedious and not feasible for large n. Further, the manual approach is susceptible to human error due to fatigue and gaps in analysts’ domain knowledge [13]. In addition, as language use evolves, the ontology would need to be extended over time. Evidence from Bhatia et al. shows that between 23%-71% of information types in any new privacy policy will be previously unseen [63], which further motivates the need for a high-precision, semi-automated method to infer ontological relationships. Unlike the quadratic (Oh(n^2)) number of paired comparisons required to identify relationships among information types, the syntax-driven method only requires a manual tagging step, which is linear (Oh(n)) in the size of the lexicon. Furthermore, word tags can be reused across information type phrases that reuse words to further reduce the time needed to perform this step.

To address the second question, we first examine characteristics of the ground-truth ontology $KB_{1,1}$ in experiment $E_{1,1}$. Lexicon L_{1} used in this experiment contains 356 information types, yielding $\frac{356 \times 355}{2} = 63,190$ possible information type pairs and relationships. According to Table 6, 899 of pairs are identified as unrelated in $KB_{1,1}$. This percentage reflects that: (1) given all possible information type pair comparison, there are few relationships (high sparsity); and (2) the corresponding imbalance between related and unrelated pairs is intrinsic to this problem’s nature. In addition, $KB_{1,1}$ contains 2015 positive relationships (i.e., direct hypernymy, synonymy, and meronymy). According to Table 7 for experiment $E_{1,1}$ and $KB_{1,1}$, the model identifies 1347 (TP) relationships from this positive space. Further, high precision of 91% suggests that a requirements analyst can trust the positive relationships (hypernymy, meronymy, and synonymy) inferred by the model. The problem of low recall (19%) arises from 5505 pairs falsely labeled as unrelated by the model. However, the model correctly identifies 60,315 unrelated pairs (TN). Based on the results in experiment $E_{1,1}$ using $KB_{1,1}$, we conclude that the model can identify most unrelated pairs; however, it cannot reduce the burden of manually checking the unrelated pairs for an analyst.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Ground truth</th>
<th>FNs total No.</th>
<th>Tacit knowledge</th>
<th>Parse ambiguity</th>
<th>Role suppression</th>
<th>Unjustifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{1,1}$</td>
<td>$KB_{1,1}$</td>
<td>344</td>
<td>268</td>
<td>16</td>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>$E_{1,2}$</td>
<td>$KB_{1,2}$</td>
<td>44</td>
<td>33</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$E_{1,1}$</td>
<td>$KB_{1,1}$</td>
<td>466</td>
<td>404</td>
<td>17</td>
<td>34</td>
<td>11</td>
</tr>
<tr>
<td>$E_{1,2}$</td>
<td>$KB_{1,2}$</td>
<td>156</td>
<td>128</td>
<td>6</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 13

False negative analysis.
9.2. Real-world applications of ontologies

The use of ontologies are directly impactful to novel techniques in privacy-sensitive static and dynamic information flow tracing in software engineering [11,55,64]. However, due to technical challenges in information flow tracing, such approaches may not yet be broadly used in industry. That said, continued pressure by regulators and corporate compliance under privacy laws, including the E.U. General Data Protection Regulation, is driving the need to understand where companies collect and use sensitive data. A preliminary step in rationalizing corporate data flows, is classifying stored data by a broad category, which evidence suggests can easily reach into the thousands of distinct types [63]. Without explicit, scalable procedures to construct these ontologies and detect relationships between information type names, companies will produce compliance gaps, where rules for protecting data are applied unevenly due to misalignments arising from ambiguous and vague information type names. Our method for inferring semantic relations between information types can bolster these efforts and increase their viability by providing a general approach for ontology construction, thus yielding a strong indirect benefit to engineers and regulators.

9.3. Analysis of false negatives

Research questions RQ1 and RQ2 investigate the extent that the method can infer relations compared to relationships identified by experts and non-experts. To address these questions, we thoroughly analyze the relations that cannot be inferred by the method and are defined by experts or non-experts in ground truths. This category of relations are counted as false negatives (FNs) in the experiments. The analysis of FNs reveals that the majority of these relations are missed by the method due to the tacit knowledge required to infer these relations. Because the method is driven by word-level role labels or tags, the method is generalizable as the assignment of a role label to a word is dependent on the meaning of the word and is stable over time. Moreover, the small number of role labels improves reuse and requires less effort in labeling new words. However, as evidenced by analysis of FNs (see Section 7), these labels do not cover tacit knowledge signaled by the type phrases and encoded in expert experiences and non-expert understandings.

9.4. Method validity

Experiments \(E_1 \) and \(E_2 \) evaluate the syntax-driven method using lexicon \(L_1 \). However, the syntax-driven method is constructed upon this lexicon \(L_1 \). To address the validity of the method, we also design experiments \(E_12 \) and \(E_22 \) using lexicons \(L_2 \) and \(L_3 \). Lexicon \(L_2 \) covers user-provided information from mobile apps in finance, health, and dating domains, whereas lexicon \(L_3 \) covers information types related to collection, usage, retention, and transfer data practices, extracted from web app privacy policies in shopping, telecommunication, social networks, employment, health, and news domains [14]. The results from these two experiments suggest that the method generalizes best for general information types than for platform information types.

9.5. Method reliability on unseen information types

To evaluate the reliability of the syntax-driven method for unseen information types and address research question RQ3, we conduct two additional experiments using lexicons \(L_2 \) and \(L_3 \) containing information types extracted from various data practices of mobile and web-based apps’ privacy policies in various domains. Our analysis reveals that the method can be reliably generalized for different information types in privacy policies with high precision and recall. Using our method to infer the semantic relations between information types reduces the ambiguity and improves the shared understanding between different stakeholders. Overall, our method shows an improvement in reducing the number of false negatives, the time, and effort required to infer semantic relations compared to previously proposed methods by formally representing the information types.

9.6. Expert vs. non-expert evaluation

Comparing results of experiments \(E_1 \) and \(E_2 \), the non-expert population preferences in \(E_2 \) result in higher precision and recall by 0.15 and 0.19, respectively, in comparison with expert relations. We believe this difference in performance measures is due to the manual approach used by experts to construct the ontology. In the manual approach, experts are presented with all the information types in lexicon \(L_1 \) without common word restriction. Experts scan the alphabetical list of the information types, looking for types with which they can create hypernymy, meronymy, or synonymy relations. Experts can search by keyword, and largely rely on their memory of information types they have seen as they discover relationships. For our evaluation purposes, we sample a set of relations between information type pairs that share at least one common word from the manually constructed ontology by experts. However, to construct the population preferences, we first select a set of information type pairs that share at least one common word from lexicon \(L_1 \) and finally this set is presented to non-experts during the study. As a result, this set is more intuitive, making it simpler for participants to identify the relationships between information types presented to them without scanning an alphabetical list and trying to retain information types they have encountered in the list. Therefore, using non-expert views as ground truth results in higher precision and recall when compared to expert views.

10. Conclusion

Privacy policies are legal documents containing application data practices. These documents are well-established sources of requirements in software engineering. However, privacy policies are written in natural language, thus subject to ambiguity and abstraction. Eliciting requirements from privacy policies is a challenging task as these ambiguities can result in more than one interpretation of a given term. In this paper, we focus on the role of hypernymy, meronymy, and synonymy and their formal relationships among terminology in privacy policies. We propose a novel, automated syntax-driven semantic analysis method for constructing partial ontologies to formalize these relationships. Formal ontologies can be used as knowledge bases by requirements analysts for resolving conflicting interpretations of ambiguous terminology. The syntax-driven method infers semantic relations between information types in privacy policies and their morphological variants based on a context-free grammar and its semantic attachments. This method is constructed based on grounded analysis of lexicon \(L_1 \) containing platform information types extracted from collection data practices of 50 mobile app privacy policies.

The current paper extends a previous conference paper [21]. In the conference version, we only evaluated our method against information types that share at least one common word in lexicons \(L_1 \) and \(L_3 \) using population preference surveys. The current paper extends the evaluation by introducing the expert-constructed ontologies as ground truths (i.e., \(K.B_{1,1} \) and \(K.B_{1,2} \)) in experiments \(E_11 \) and \(E_12 \). However, our syntax-driven method fails to infer the relations in \(K.B_{1,1} \) and \(K.B_{1,2} \) that are between information types that share no common word. We consider such relationships out of scope for the technical contribution of this paper. Therefore, we introduce \(K.B_{1,1} \) and \(K.B_{1,2} \) (i.e., subsets of \(K.B_{1,1} \) and \(K.B_{1,2} \)) as ground truths. In summary, experiment \(E_11 \) results in 84% precision and 48% recall when compared to expert views in \(K.B_{1,1} \). Further, experiment \(E_12 \) results in 80% precision and 84% recall when compared to expert views in \(K.B_{1,2} \). To show the broad image of the problem, we also report the results of our syntax-driven method compared to \(K.B_{1,1} \) and \(K.B_{1,2} \). We emphasize that our method is not capable of identifying the relations in this broad space. We foresee using word embeddings trained using Word2Vec and language models such as BERT that can address this shortcoming for our future work.
CRediT authorship contribution statement

Mitra Bokaei Hosseini: Conceptualization, Methodology, Software, Validation, Formal analysis, Data curation, Writing - original draft, Visualization. Travis D. Breaux: Conceptualization, Software, Validation, Formal analysis, Investigation, Writing - review & editing, Supervision, Funding acquisition. Rocky Slavin: Writing - review & editing. Jianwei Niu: Methodology, Formal analysis, Resources, Funding acquisition, Supervision. Xiaoyin Wang: Methodology, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank Xue Qin for her participation as an expert in experiment E_{\ldots} This research was supported by NSF, United State awards #1736209, #1748109, #2007718, #1453139, and #1948244.

References

[18] G. Frege, Über begriff und gegenstand, OR Reisland, 1892.

