
Lightweight Collaborative Inferencing for
Real-Time Intrusion Detection in IoT Networks

Gabriel A. Morales, Jingye Xu, Dakai Zhu, and Rocky Slavin
Department of Computer Science

The University of Texas at San Antonio
San Antonio, Texas, USA

{gabriel.morales, jingye.xu}@my.utsa.edu, {dakai.zhu, rocky.slavin}@utsa.edu

Abstract—The security in Internet-of-Things (IoT) networks
becomes increasingly important with the growing popularity of
IoT devices and their wide applications (e.g., critical infras-
tructure monitoring). However, traditional intrusion detection
systems (IDS) are not suitable for IoT networks due to their
large resource requirements. Moreover, IoT networks tend to
have multiple access points for IoT devices and thus benefit from
a distributed framework to enable collaborative prevention of
potential attacks. To this end, we propose a lightweight collabo-
rative distributed network IDS (NIDS) based on widely-utilized
machine learning (ML) models, which are trained through a
federated learning framework with two known datasets. We
evaluate the distributed NIDS using the trained ML models
on an IoT network testbed under seven types of attacks in
comparison with Snort (a state-of-the-art IDS) and a centralized
implementation of our proposed NIDS. An offline benchmark is
also designed to measure the system’s performance with regard
to resource usage and response time. Our results show that
the proposed distributed NIDS outperforms Snort in identifying
malicious traffic and achieves a much lower false positive rate
compared to the centralized version in real-time for all seven
types of network attacks tested.

Index Terms—Intrusion Detection, Internet of Things, Ma-
chine Learning, Network Security

I. INTRODUCTION

The Internet of Things (IoT) connects a multitude of

devices with each other and is the backbone of smart homes,

smart cities, critical infrastructure monitoring, and count-

less other applications [24]. With the integration of sensors,

lightweight computation, and the proliferation of wireless and

wired technologies on IoT platforms, consumers can easily

interact with their surrounding physical world thoroughly

through IoT networks [2]. This is widely apparent as an

estimated 83 billion IoT-compatible devices are predicted to

be in use by 2024 [22]. As a result of the widespread adop-

tion of IoT infrastructures throughout various domains, such

networks have become attractive to hackers and malicious

applications [2]. This problem motivates the development

of more IoT-conscious network intrusion detection systems

(NIDS) that automatically monitor for potential threats to

IoT networks [24], [14]. However, there remain challenges

in deploying appropriate NIDSs on IoT networks.

First, traditional NIDSs, deployed on access points, may

not be suitable for deployment on IoT networks in terms

of network architecture. IoT networks have highly mobile

architectures [6], [15] due to the way IoT devices are designed

to communicate with a logical center node through network

access points [23]. This approach enables the flexibility for

IoT devices to switch from one access point to another access

point when moving, thus increasing the potential risk for

attacks [10]. Considering this architecture, even if one access

point locally detects malicious activity, the attacker can switch

to another access point to continue the attacks. Therefore, a

flexible NIDS in which collaboration takes place, is more

suitable: nodes, including access points, in a connected IoT

system, can share local alerts with one another, creating a

stronger deliberation in attack detection.

Second, IoT devices typically have constrained re-

sources [4], [5] and thus have limited computational power

to deploy complex and computationally heavy algorithms

for security. Traditional NIDSs use traffic rules to detect

malicious activities and are usually deployed on servers that

are powerful and can detect risks quickly [21]. Moreover,

the traffic rules need to be updated frequently and manually,

which make traditional NIDSs less feasible for IoTs due to

the resources required.

Finally, IoT networks often convey sensitive data [16],

including personally identifiable information [3], that the data

owners may not want to share outside of the network [12]. For

this reason, intrusion detection should be conducted locally.

To address these challenges, we propose a collaborative

inference-based NIDS for IoT networks. As a proof of concept

and evaluation, we devised an IoT network testbed consisting

of multiple access points and IoT devices to simulate the char-

acteristics of a consumer-level IoT network. We then employ

a federated machine learning system [17] to train machine

learning (ML) models adopted in the proposed NIDS. Due

to the distributed nature of the proposed NIDS, the access

points can determine locally if traffic flows between devices

are malicious with minimal overhead to the IoT network.

We evaluate the performance of the proposed NIDS with

five widely-utilized ML models and compare their results to

the state-of-the-art NIDS, Snort [20], as well as a centralized

(i.e., non-distributed, sequential) version of the proposed

NIDS framework to evaluate both the system’s ability in

detecting malicious traffic and its response time. The eval-

392

2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy
Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Metaverse)

979-8-3503-4655-8/22/$31.00 ©2022 IEEE
DOI 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00076

uation results show that, for all considered ML models, the

distributed NIDS outperforms Snort in identifying malicious

traffic. Specifically, Snort could only detect two out of seven

attacks in the experiments, while the distributed NIDS de-

tected six out of seven attacks at the node level. Moreover,

the distributed nature of the NIDS results in a much lower

false positive rate compared to the centralized version for all

seven types of network attacks evaluated.

We summarize the contributions of this paper as follows:

1) A Novel, IoT-Oriented Collaborative IDS Frame-
work: A lightweight collaborative inference framework

is proposed and evaluated on resource-constrained de-

vices such as Raspberry Pis. Real-time detection of

potentially malicious traffic yields fast responses as low

as one second and lower false positive rates with each

model; we also show how the data delegation in the

distributed, collaborative system is performed.

2) Offline Benchmark: As part of the evaluation of the

framework, we present a benchmark application de-

signed to add stress to the models and algorithms. The

offline benchmark system measures disk space taken

by the models, the amount of time to load them into

memory, and the time it takes for each model to predict

on a large set of flows. The stress-test for the flow table

size is adjustable, along with the packet capture to load

for the test.

3) Experimental Evaluation of the Proposed NIDS: We

evaluate the proposed NIDS powered with five ML

models trained by two known datasets including seven

attack types on an IoT network testbed. Compared to

the state-of-the-art production-level NIDS, Snort, the

proposed framework is generally more accurate and acts

more rapidly in detecting diverse attacks.

The remainder of this paper is organized as follows.

Section II presents background and closely related work.

The main ideas for the proposed approach are discussed

in Section III. Section IV presents an evaluation of the

approach and Section V discusses potential threats to validity.

Section VI presents our conclusions and outlines our future

work.

II. BACKGROUND AND CLOSELY RELATED WORK

An intrusion detection system (IDS) automates the process

of monitoring for potential threats to a system. These threats

may come in the form of malware, adversaries, or any

other malicious actor attempting to gain unauthorized access

to endpoint devices and the network. A network intrusion
detection system (NIDS) is one such system designed to

facilitate this process and monitor suspicious activities occur-

ring across the network through traffic packets or flows [21].

Traditionally, how well a NIDS performs highly depends

on the detection rules that are designed by analyzing the

specific characteristics of the attack flows. The rules are

highly flexible in that they can be updated to detect new

attacks. However, this incremental update method also makes

these rules complicated and hard to maintain. Moreover, the

rules are usually released after attacks become popular and

attract network administrators’ notice. Snort is the foremost

open source NIDS [20]. It uses a series of rules that help

define the malicious network activity and find packets that

match against them. In turn, Snort can generate alerts and

take actions for users. It can detect most network attacks but

requires users to update rules periodically.

A traffic flow is defined as containing the common net-

working attributes of two nodes that communicate with each

other. For example, a standard flow contains the Internet

Protocol (IP) address, Media Access Control (MAC) address,

ports, duration of the communication, package payload, along

with statistical information. This information is organized into

corresponding forward (source to destination) and backward

(destination to source) directions for a single flow. The data

structure of many flows together can be viewed as a flow
table. Based on the aggregate information in a single flow,

node network behavior can be collected. As such, they can

then be used by a NIDS to differentiate between abnormal

and benign traffic flows.

Various novel intelligent NIDS have been proposed demon-

strating that traditional machine learning algorithms can be

applicable in lightweight applications, without sacrificing

detection and model performance [7], [9], [11]. Commonly,

collaboration is implemented by collaborative learning. For

instance, several K-Means variants via distributed computa-

tion of alerts from various local IDS systems were proposed

by Mokry et al. [18]. In other cases, collaboration is achieved

through distribution and coordination of elements within such

a system. Igbe et al. [8] modeled a non-centralized NIDS

based on artificial immune systems. Dat-Thinh et al. [4]

implemented a collaborative mechanism by way of a multi-

staged, multi-model approach. This is a non-distributed col-

laborative process whereby the IoT traffic detection is split up

into three pieces: detecting device type, detecting whether or

not this particular traffic is anomalous, and finally detecting

the specific attack type. Notably, the aforementioned systems

implement their collaborative process during training. Our

system implements a collaborative algorithm during real-time

predictions .

McMahan et al. [17] introduced a distributed collaborative

machine learning approach known as federated learning. This

approach enables distributed nodes to collaboratively learn

and update any shared model while keeping all the training

data local. Federated learning can be a valuable approach

for IoT NIDSs as it does not require the need to upload the

privacy-concerned data to a central node but still can use them

to train NIDS models efficiently.

III. METHODOLOGY AND IMPLEMENTATION

Figure 1 illustrates the overview of the proposed NIDS

framework with collaborative inference and machine learning

models. From left to right: first, our chosen datasets are pre-

processed to sanitize the traffic flows and combine them.

393

Fig. 1. Overview of the Proposed NIDS Framework with Federated ML models and Collaborative Inference.

Then, these datasets are used to train the adopted ML models

through a federated learning system, which are subsequently

saved for deployment. In the deployment stage, as shown

in the right part of the figure, each trained ML model

is loaded into the distributed compute nodes (representing

access points) in the IoT network. For ease of processing

and evaluation, network traffic is captured from the switch

and routed into a master node which will orchestrate the

collaborative inference and make the final decisions of benign

or malicious network flows. Notably, the master node can also

process all the network traffic flows using one of the trained

ML models (i.e., a centralized version of the NIDS).

In a distributed IoT network, the task of evaluating a

network flow can occur more efficiently in real-time since

subdivided captures are delegated to each computing node

by the master node (as shown in Figure 1). Each computing

node predicts on its own sets of data, which necessitates a

collaborative scheme for deliberation as traditional voting is

not sufficient and difficult to scale.

A. Distributed Collaborative Framework Design

Fig. 2. Concurrent Distributed NIDS Data Flow

The proposed lightweight collaborative framework main-

tains fairness and operates in real-time by yielding a fast

response. The system encapsulates a single responsibility in

each compute node, which reports to the master node. Each

compute node contains separate evidence buffers to which

local predictions are mapped. Predictions made raise the count

of benign or malicious alerts within the particular node’s

buffer. Once any of the benign or malicious thresholds are

reached within a compute node, the evidence is then sent out

to the master node, which maintains its own local buffer and

thresholds. Once enough compute nodes have reported the

same judgement over time, the master node makes the final

determination. This careful deliberation allows the system to

provide additional fairness so as to limit false positive rates

within the system, regardless of the model used.
We choose to use the Dask [19] distribution framework

due to its plug-and-play functionality: any computing device

with Dask installed may become a component in the cluster

via a single command-line invocation. Furthermore, Dask

provides straightforward APIs to submit computing tasks to

the cluster. The NIDS is divided into two primary computa-

tion components: the master node and the compute nodes.

To use Dask, the master node will be the server running

the dask-scheduler service, responsible for transpar-

ently managing the cluster and submitting computation tasks.

Any device can become a compute node by running the

dask-worker service. The compute nodes may come and

go on-demand without interrupting the cluster, making the

system easily scalable. In order to develop a NIDS which is

compatible with our models, live traffic must be converted

into the flow formats the models were trained on. Live

data is captured from our test network, which may either

be benign or malicious depending on if we are conduct-

ing attacks. For ease of implementation, these captures are

saved using a tempfile system call to create flows using

NFStream [1] from each capture. Furthermore, all models

have their weights, along with their respective feature scalers,

saved. In deployment, both are loaded. In what follows, the

algorithmic steps for each component is described in more

detail.
1) Master Node: The master node computation is divided

into four concurrent tasks. Outside of the Dask scheduler,

which is initialized on startup, three threads are in operation.

As shown in Figure 2, these three threads are labelled numer-

ically with four algorithmic sub-tasks each. Thread 1 captures

data from the Network Switch plugged into the Ethernet

394

interface using the Python networking package, Scapy (step

1A). These data packets are then saved to random access

memory (RAM) and processed into individual flows via the

NFStream package, then turned into flow tables (steps 1B &

1C). To perform effective data delegation, historical flows are

used by appending each new flow table to the table generated

in the prior iteration. The resulting aggregate flow table is

split into smaller fragments amongst the flow table queue for

thread 2, and flushed for the next iteration (step 1D).

Thread 2 first takes the next available flow table from

a thread-safe queue, and then passes it as a parameter to

be scheduled for a task on the cluster (steps 2A & 2B).

Each submitted task is handled by the Dask scheduler service

running in the background. When a task is submitted, a

Dask future object, an asynchronous object which allows non-

blocking computations, is returned immediately for the next

step (step 2C). This future, representing the cluster task, is

then added to the DASK_FUTURE_QUEUE on the system for

thread 3 (step 2D).

For the steps in thread 3, Algorithm 1 is also refer-

enced. Thread 3 obtains the next available future from the

DASK_FUTURE_QUEUE (step 3A, line 27) and then the

result method is called on the future. This is a blocking

call, so instead we check if the task is pending and re-

queue it if so (step 3B, lines 28-31), otherwise the result

can be obtained. These results are encoded from the evidence

buffers in the compute nodes. Results are then submitted

to the master evidence buffer (step 3C, lines 31-35). The

final step is observing the master node’s thresholds and

checking if either is exceeded. If the benign threshold,

MN_BENIGN_THRESH, is exceeded, enough evidence has

been accrued to judge that activity is benign. If the malicious

threshold, MN_MAL_THRESH, is exceeded, the activity is

judged as malicious. Finally, the respective entry is flushed

(step 3D, lines 36-42).

2) Compute Node(s): In Figure 2 Compute Node X de-

notes one or more devices joining as a dask-worker to

the cluster. Algorithm 1 is also referenced. Compute nodes

have two steps: predict on the received flow table (lines

3-4) and map the predictions to the local evidence buffer.

For each prediction, the MAC addresses are mapped to the

buffer and their judgment count is increased (lines 6-10).

If any of the thresholds are exceeded, the MAC address is

encoded with the node’s judgment of benign or malicious

and the count (lines 11-14 & 15-19). If the benign thresh-

old, CN_BENIGN_THRESH, is exceeded, it is reset to zero

for future flows of this device. If the malicious threshold,

CN_MAL_THRESH, is exceeded, its counts are gradually reset

by half to maintain a level of suspicion over time, thus

ensuring real malicious activity is not ignored.

The source code for Algorithm 1 and the proposed NIDS

system is open source and available on GitHub1.

1https://github.com/jingye-xu/DistriLearn

Algorithm 1 Distributed Collaborative Flow Detection NIDS

1: function RUN INFERENCE(dataframe)
2: model.get instance() // load once and reference from mem-

ory
3: predictions ← model.predict(dataframe)
4: result ← 0
5: mac index ← 0
6: while mac index ≤ dataframe.length do
7: mac ← dataframe[mac column][mac index]
8: prediction ← predictions[mac index]
9: buffer ← {benign: 0, malicious: 0}

10: buffer[mac][prediction] += 1
11: if buffer[mac].benign ≥ CN BENIGN THRESH then
12: result ← {mac : buffer[mac].benign count}
13: buffer.flush benign(FULL)
14: end if
15: if buffer[mac].malicious ≥ CN MAL THRESH then
16: result ← {mac : buffer[mac].malicious count}
17: buffer.flush benign(ONE HALF)
18: buffer.flush malicious(ONE HALF)
19: end if
20: mac index += 1
21: end while
22: return result
23: end function
24:

25: function RESULTS

26: while not shutdown do
27: dask future ← DASK FUTURE QUEUE.dequeue()
28: if dask futue.status == PENDING then
29: DASK FUTURE QUEUE.enqueue(dask future)
30: end if
31: result ← dask future.result()
32: mac ← result[0]
33: prediction ← result.prediction type
34: type count ← result[prediction].count
35: master buffer[mac][prediction] += type count
36: if buffer[mac].benign ≥ MN BENIGN THRESH then
37: // Report benign judgment
38: buffer.flush benign(FULL)
39: end if
40: if buffer[mac].malicious ≥ MN MAL THRESH then
41: // Report malicious judgement
42: buffer.flush malicious(FULL)
43: end if
44: end while
45: end function

B. Datasets and Feature Engineering

To achieve differentiation between malicious and benign

traffic, we selected two datasets provided by the Canadian

Institute for Cyber Security (CIC): CIC-IDS 20172 and CSE-

CIC-IDS 20183. These contain organized network attacks

commonly used by adversaries. We restrict our scope to these

datasets for simplicity and defer external datasets to future

work. Since many IoT devices are connected on the Wi-

Fi network, all attacks conductible on non-IoT devices are

applicable to IoT devices as well.

We implement a preprocessing phase which ensures the

2https://www.unb.ca/cic/datasets/ids-2017.html
3https://registry.opendata.aws/cse-cic-ids2018

395

TABLE I
FEATURES SELECTED FROM CIC DATASETS

Feature Name Description
Destination Port Communication Protocol Port.
Flow Duration Duration of a flow.
Total Fwd Packets Total forward packets.
Total Backward Packets Total backward packets.
Total Length of Fwd Pack-
ets

Total length of forward packets.

Total Length of Bwd
Packets

Total length of backward packets.

Fwd Packet Length Max Maximum length of forward packets.
Fwd Packet Length Min Minimum length of forward packets.
Fwd Packet Length Mean Mean length of forward packets.
Fwd Packet Length Std Standard deviation length of forward pack-

ets.
Bwd Packet Length Max Maximum length of backward packets.
Bwd Packet Length Min Minimum length of backward packets.
Bwd Packet Length Mean Mean length of backward packets.
Bwd Packet Length Std Standard deviation length of backward

packets.
Flow Bytes per second Number of bytes transmitted per second.
Flow Packets per second Number of packets transmitted per second.
Flow IAT Mean Mean inter-arrival time in the flow.
Flow IAT Max Maximum inter-arrival time in the flow.
Flow IAT Min Minimum inter-arrival time in the flow.
Fwd IAT Total Total inter-arrival time of forward packets.
Fwd IAT Mean Mean inter-arrival time of forward packets.
Fwd IAT Std Standard deviation inter-arrival time of for-

ward packets.
Fwd IAT Max Maximum inter-arrival time of forward

packets.
Fwd IAT Min Minimum inter-arrival time of forward

packets.
Bwd IAT Total Total inter-arrival time of backward packets.
Bwd IAT Mean Mean inter-arrival time of backward pack-

ets.
Bwd IAT Std Standard deviation inter-arrival time of

backward packets.
Bwd IAT Max Maximum inter-arrival time of backward

packets.
Bwd IAT Min Minimum inter-arrival time of backward

packets.
Fwd Packets per second Number of forward packets transmitted per

second.
Bwd Packets per second Number of backward packets transmitted

per second.
Min Packet Length Minimum packet length for a flow.
Max Packet Length Maximum packet length for a flow.
Packet Length Mean Mean length of packets in a flow.
Packet Length Std Standard deviation length of Packets in a

flow.
Packet Length Variance Variance in the length of packets in a flow.
RST Flag Count Number of RST flags transmitted for a flow.
Average Packet Size Average packet size transmitted in a flow.

quality and performance of the models. In Figure 1, this phase

is summarized in the training process’ data preprocessing box.

Our feature set is listed in Table I. The original datasets

are also merged to create a new, larger one, resulting in

organic upsampling. Table II shows each of the datasets’ class

distributions after processing.

The NIDS is designed to differentiate between benign and

potentially malicious traffic. However, each of the flows in

the datasets is labelled as one of seven network-based attack

categories: Brute Force (FTP/SSH), DoS/DDoS, Heartbleed,

Web Attacks, Infiltraion, Botnet, Portscan. Hence, each at-

TABLE II
DATASET CLASS DISTRIBUTIONS

CIC-IDS17 CIC-IDS18 CIC17+18
Total 851,482 2,702,734 3,554,216
Malicious 425,741 1,351,367 1,777,108
Benign 425,741 1,351,367 1,777,108

tack flow is relabeled as malicious while flows labeled

benign are unchanged. This strategy allows the NIDS to

easily inter-operate between datasets and aggregate them

without accommodating change in class sizes. Additionally,

this allows the datasets to be used for binary classification.

C. Machine Learning Models

Five widely-utilized machine learning models [9], [13] are

chosen for the proposed NIDS, which are trained using the

three processed datasets as discussed in the last section.

Implemented in Sklearn, we use: The Support Vector Ma-

chine (SVM), Logistic Regression (LR), K-Nearest Neighbors

(KNN), and Random Forest (RF). We implemented the Neural

Network (NN) using PyTorch. Each of the models are trained

using federated learning with the average strategy.

D. Network Architecture of the Testbed

Router

Nvidia Xavier
Master node

IoT Devices

Switch

1 2 3 4 5

OpenWRT
Access Point

Sensor Reported
state

Actuator

Kali OS
Attacker

RasPwn OS
Victim

Ubuntu OS
Computing Nodes

Network: 192.168.0.0/24

192.168.0.1

192.168.0.21 192.168.0.22

IP addresses:
DHCP

192.168.0.51

192.168.0.52

IP address:
DHCP

192.168.0.41

Fig. 3. Network architecture of the IoT Network Testbed.

Figure 3 shows the basic network topology for the IoT

network testbed designed to simulate a real-world smart home

environment upon which the NIDS system is implemented.

For the router, the testbed utilizes an ASUS RT-AC1200GE

disconnected from the Internet to prevent unwanted traffic.

An NVIDIA Jetson Xavier with a 6-core 64-bit CPU and 8

GB Memory running Ubuntu 18.04 serves as the master node

for our cluster. Two Raspberry Pi (RPI) devices act as access

396

TABLE III
DISTRIBUTED SYSTEM REACTION TIMES (S)

Network Discovery DoS Brute Force Vuln. Discovery Port Scan Medusa Brute Fuzzing
Relaxed Load Relaxed Load Relaxed Load Relaxed Load Relaxed Load Relaxed Load Relaxed Load

LR (2017) F F 2 4 4 4 6 7 6 11 1 1 1 1
SVM (2017) F F 1 1 2 2 12 12 4 4 1 1 1 1
KNN (2017) F F 2 3 4 4 7 7 F F 3 2 2 3
NN (2017) F F 1 2 2 2 2 2 14 17 2 2 1 2
RF (2017) F F F F 30 50 F F F F 1 20 F F
LR (2018) F F 2 3 1 2 11 12 1 2 1 2 1 2

SVM (2018) 1 1 1 1 1 1 12 12 1 1 1 1 1 1
KNN (2018) F F 4 7 3 4 13 14 6 6 2 3 2 5

NN (2018) F F 2 3 3 3 12 13 1 2 1 2 1 2
RF (2018) F F 1 2 2 5 13 15 3 3 1 1 1 2

LR (17+18) F F 1 2 2 2 12 13 1 1 1 2 1 1
SVM (17+18) F F 1 2 2 2 12 12 1 2 2 2 1 2
KNN (17+18) F F 3 4 4 7 13 14 6 10 3 3 2 8
NN (17+18) F F 1 4 2 2 13 13 2 2 2 2 1 1
RF (17+18) F F 2 2 2 3 13 16 2 2 1 2 1 1

Snort F F F F 2 F 11 42 F F F F F F

points running OpenWRT, an open-source router OS. Various

IoT devices such as smart phones, speakers, and cameras

are connected to these RPI access points. Two other RPI 4B

devices act as compute nodes in our IDS: 4-core CPU, with

2GB and 4GB of memory. Finally, we have two RPI devices

for pen-testing. One RPI runs Kali Linux as the attacker, the

other runs a RasPwn OS web server as the victim.

A Netgear (GS305E) switch is placed between the router

and the rest of the network, including the NIDS nodes. There

are five ports to which the router, all RPI devices, and the

master node are connected and have been assigned static IP

addresses as shown in Figure 3. All traffic flowing to and from

port 3 (router) is also mirrored to port 5 (master node). We

assume that the attacker has no knowledge of the IDS system

to prevent unwanted interference as discussed in Section V.

IV. EVALUATION AND RESULTS

In this section, we address the research questions (RQ)

below by evaluating the performance of the proposed NIDS.

• RQ1: Is a collaborative, inference-based NIDS viable

compared to the state of the art?

• RQ2: Is the distributed, collaborative design of the NIDS

system beneficial?

• RQ3: How well do different machine learning algo-

rithms balance performance and resource consumption

when deployed in the NIDS?

1) Baseline: Snort was chosen as the baseline to evaluate

the performance of the proposed, as it supports multiple

platforms [20]. The GPLv2 Community rules were used for

the deployment of Snort. To detect all the traffic flows, Snort

was configured to alert when it detects malicious activity

instead of blocking it. To evaluate RQ2, a centralized version

of the proposed NIDS was also designed which runs data

collection and performs model inferences solely on the master

node (i.e., no parallelism or distribution is exploited). This

centralized NIDS acts on all generated flows immediately.

2) Time Calibration: NTP settings were configured on all

nodes in the system such that their local time is synchronized.

This enables the approximate calculation of response times by

obtaining the difference from the time of starting attacks and

the time of detecting malicious flows.

3) Attack Design: We conducted seven different types of

attacks to test successful detection and how long it will take

to detect, described in Section III-B. The attack types are

identical to those present in the CIC datasets. All attacks were

launched using the Kali RPI device. We list them below along

with the tools and commands we used to launch them:

• Network Discovery: nmap
• Denial of Service (DoS): hping3
• Brute Force: nmap
• Vulnerability Discovery: nmap
• Port Scan: nmap
• SSH/FTP Brute Force: medusa with SecLists4

• Web Fuzzing: ffuf with SecLists

Each of these attacks were conducted five times to measure

the best response time overall. We divide our measurements

into a Relaxed state, where the NIDS is running under nor-

mal conditions, and a Load state where the NIDS is running

under a highly-loaded CPU using the stress command-

line tool. We measure response times as (detection time−
attack start time) using NTP synchronization. Entries in

Table III and Table IV contain a response time if the attack

was successfully detected at any point in the experiment. If

Snort, the centralized, or distributed systems were unable to

successfully detect the attacks by their completion, the entries

are marked as F (failed detection).

4) Offline Benchmark Design: To stress-test the models

and simulate a network under load, we processed a 7.73 GB

packet capture with the trained models loaded. As with our

real-time design, we use NFStream to read the capture from

disk quickly and generate the flowtable data structure. An

adjustable limit of 5,001 entries was placed on the flowtable,

which takes 1.4 MB of memory. As shown in Table V, a

growth of disk space, prediction time, and load time is present

4https://github.com/danielmiessler/SecLists

397

TABLE IV
CENTRALIZED SYSTEM REACTION TIMES (S)

Network Discovery DoS Brute Force Vuln. Discovery Port Scan Medusa Brute Fuzzing
Relaxed Load Relaxed Load Relaxed Load Relaxed Load Relaxed Load Relaxed Load Relaxed Load

LR (2017) 1 2 1 1 4 3 11 11 F F 1 1 1 1
SVM (2017) 2 2 1 1 2 1 12 12 1 1 1 1 1 1
KNN (2017) 1 2 1 1 4 3 11 11 F F 1 1 1 1
NN (2017) 1 1 1 1 1 2 11 12 1 1 1 1 1 1
RF (2017) F F F F 6 8 F F F F 1 1 F F
LR (2018) 1 1 1 1 1 2 11 11 1 1 1 1 1 1

SVM (2018) 1 1 1 1 2 2 12 11 1 1 1 1 1 1
KNN (2018) 1 1 1 1 2 2 11 11 1 1 1 1 1 1

NN (2018) 1 1 1 1 2 2 11 11 1 1 1 1 1 1
RF (2018) 1 1 1 1 1 2 14 11 1 1 1 1 1 1

LR (17+18) 2 1 1 1 1 1 11 11 1 1 1 1 1 1
SVM (17+18) 1 1 1 1 2 2 12 12 1 1 1 1 1 1
KNN (17+18) 1 1 2 1 1 1 11 12 1 1 1 1 1 1
NN (17+18) 1 1 1 1 1 1 11 12 1 1 1 1 1 1
RF (17+18) 1 1 1 1 2 1 12 11 1 1 1 1 1 1

Snort F F F F 2 F 11 42 F F F F F F

TABLE V
OFFLINE BENCHMARK TESTS

Disk
Space

Model
Init. Time (s)

Prediction
Time (s)

LR (2017) 1.02 KB 0.114 0.0008
SVM (2017) 926 Bytes 0.00087 0.0003
KNN (2017) 164.68 KB 0.355 6.34
NN (2017) 9.02 KB 0.007 0.06
RF (2017) 162.19 KB 0.355 0.016
LR (2018) 1.02 KB 0.08 0.0006
SVM (2018) 926 Bytes 0.001 0.0013
KNN (2018) 522.72 MB 0.76 19.58
NN (2018) 9.022 KB 0.007 0.06
RF (2018) 185.11 KB 0.31 0.02
LR (17+18) 1.02 KB 0.07 0.001
SVM (17+18) 926 Bytes 0.0011 0.00039
KNN (17+18) 685.01 MB 0.9 24.69
NN (17+18) 9.022 KB 0.01 0.046
RF (17+18) 185.81 KB 0.21 0.016

for some models. This gives a primary indication of how the

model will scale in real-time.

5) False Positive Rate Comparisons: To measure the false

positive rates, one computing device generated passive benign

traffic. During this time, no attacks, malicious activity, or ex-

ternal interventions took place. We ran all models for 30 min-

utes each to obtain how much of the benign traffic was flagged

as malicious for an extended period of time. The rates were

calculated relative to the number of individual flows generated

for that system (distributed system and centralized system):

(system malicious flags÷ system total flags) ∗ 100
Next we discuss our research questions.

RQ1: We compared our distributed collaborative NIDS

to Snort using the same attacks from Section IV-3 and the

standard community rules. In the normal state, Snort detected

two of the seven attack types: brute force in two seconds and

vulnerability discovery in 11 seconds, while the other types

were undetected. When under stress, Snort only detected one

attack: vulnerability discovery in 42 seconds. Tables III and

IV display Snort’s performance for each attack under these

states. In contrast, the distributed NIDS system, shown in

TABLE VI
FALSE POSITIVE RATE COMPARISON

Centralized (%) Distributed (%)
LR (2017) 15 8
SVM (2017) 9.3 3
K-NN (2017) 3 2
NN (2017) 4 3
RF (2017) 0 0
LR (2018) 32 16
SVM (2018) 38 28
K-NN (2018) 2 0.9
NN (2018) 6 4
RF (2018) 2 0.3
LR (17+18) 13 4
SVM (17+18) 20 12
K-NN (17+18) 5 3
NN (17+18) 27 4
RF (17+18) 1.4 0.2

Table III, detected all of the attack types with faster response

times when relaxed and stressed. For instance, the SVM

(2018) model detected all of these attacks in one second, and

only 12 seconds for vulnerability discovery. This shows that,

in comparison to state of the art, the proposed NIDS is viable.

RQ2: We compared our distributed collaborative NIDS

to its centralized counterpart in addition to measuring the

distributed system’s overhead times.

The centralized system was designed with no parallelism

or distribution, thus it infers on incoming flows immediately.

As shown in Table IV, the slowest reacting models were

trained on the 2017 dataset: KNN detected six out of the

seven attacks and RF only detected two attack types. These

response times were also the highest in difference of the three

datasets for the brute force attack. For the 2018 dataset and

the combined dataset, all of the attacks were detected, with

a maximum of a one second shift in response times between

the two sets. Furthermore, load factors for each experiment

added no overhead resulting in ±1s differences.

The thresholds set for the master and compute nodes

control the strength of deliberation prior to flags being raised.

As a result, the thresholds will also affect false positive

398

TABLE VII
REAL-TIME METRICS

RAM
Reference

(ms)

Map

(ms)

Average

Inference
(ms)

Memory

(MB)
CPU
(%)

LR (2017) 2E-3 2E-1 8.0E-1 112 4
SVM (2017) 2E-3 4E-1 9.0E-1 123 5
KNN (2017) 2E-3 2E-1 9.1E1 649 20
NN (2017) 2E-3 2E-1 1E0 197 4
RF (2017) 2E-3 2E-1 4.9E0 123 9
LR (2018) 1E-3 1E-1 7E-1 132 4
SVM (2018) 6E-3 4E-1 1E0 121 5
KNN (2018) 2E-3 4E-1 6.2E2 631 39
NN (2018) 2E-3 2E-1 1.9E0 198 6
RF (2018) 2E-3 3E-1 7E0 138 6
LR (17+18) 2E-3 3E-1 9E-1 135 5
SVM (17+18) 2E-3 6E-1 9E-1 134 5
KNN (17+18) 2E-3 2E-1 7.1E2 794 54
NN (17+18) 1E-3 3E-1 1.6E0 198 4
RF (17+18) 1E-3 3E-1 9.7E0 139 6

rates. In practice, these thresholds can be adjusted to suit the

desired sensitivity of the NIDS. We seek to find a balance

between rapid detection and strong deliberation. We used two

compute nodes with the malicious threshold set to 10 and

the benign threshold set to 26. Our master node’s malicious

threshold was set to two and 20 for benign. Similar to the

centralized system, the slowest reacting models are present

in the 2017 dataset: RF only detected one attack of seven,

and the KNN detected five, shown in Table III. None of

the models detected network discovery, which is expected

since this attack was not present in the original datasets;

this particularly differentiates the false positive rates present

in Table VI. Our distributed collaborative system exhibited

a large reduction in false positive rates due to the stronger

deliberation the framework imposes. As displayed in Table III,

reaction times remained low and rarely had a shift larger

than ±2s as compared to centralized results. This implies that

our system remains efficient and responsive. Furthermore, our

distributed system provides a reduction in false positive rates

through the stronger deliberation.

Finally, we limited our captures to 90 packets per round,

which averaged 0.704s on steady traffic. Importantly, this is

unavoidable overhead. The total overhead added from writing

to, and reading captures from, RAM was 0.0824s on average,

with the maximum capture being 105KB. The longest amount

of time taken is converting these flows into a flow table data

structure (dataframe), at an average of 0.13s. Overall, the

expected overhead is 0.2214s to submit real-time flow tables

to our cluster.

RQ3: To evaluate the different models, we compared the

metrics obtained by the models during training on each dataset

in tandem with how each of them perform in real-time.

Further, we observed their offline stress test performance.

Our real-time metrics (Table VII) represent the metrics that

correspond to each component of the NIDS taken by a task

on the compute nodes: RAM indicates the time it takes to

reference the model from memory each time, Map indicates

the time the algorithm takes to map from predictions to the

evidence buffer, Average Inference is the amount of time

TABLE VIII
TRAINING METRICS AND RESULTS

Accuracy

(%) F1
Precision

(%)
Recall

(%)
LR (2017) 91.62 0.91 88.28 95.84
SVM (2017) 91.66 0.92 87.91 96.64
KNN (2017) 99.05 0.99 98.63 99.47
NN (2017) 90.95 0.91 87.69 95.29
RF (2017) 98.52 0.98 99.17 97.86
LR (2018) 86.35 0.86 83.43 90.69
SVM (2018) 81.70 0.82 80.21 84.11
KNN (2018) 94.97 0.94 97 92
NN (2018) 88.75 0.88 86.75 90.28
RF (2018) 93.33 0.93 97 89.42
LR (17+18) 85.72 0.86 82.60 90.60
SVM (17+18) 82.11 0.8 79.67 86.38
KNN (17+18) 95.9 0.95 97.24 94.52
NN (17+18) 84.56 0.85 81.23 90.06
RF (17+18) 93.81 0.93 96.199 91.24

on average for a model to predict on the incoming flows,

Memory usage and CPU represent the resource utilization of

the compute node. For the Sklearn models, a 35% train/test

split is applied. For the neural network, a train/test split of

25% is applied.

CIC-IDS 2017 is the smallest dataset when balanced, which

is well-indicated by the performance of the models. Shown in

Table VIII, each of these models achieved high accuracy and

F1-Score; precision remained high with the lowest being 87%

and recall reaching 99%. When referenced with Table VII, we

see that each of the metrics took less than a millisecond. KNN

used the highest amount of resources and time, with RF being

second highest, exceeding a millisecond.

For the 2018 dataset and the combined dataset, the RAM

and Map metrics were unchanging with the best at one-

thousandth of a millisecond each. The impact of the datasets

on the models was such that accuracy fell below 90% with

the worst reaching 81%. F1 fell as low as 0.82, with precision

reaching 79% and recall reaching 84%. In general, increasing

dataset size slightly degrades overall training performance;

however, this is also indicative of less potential to overfit.

KNN did not scale well in our system: as the dataset in-

creases, so too did the resource consumption. In addition,

this is further evident by our offline benchmark where this

particular model takes the most disk size, initialization time,

and prediction times reaching 25 seconds as the dataset

size increases. The most efficient model with the highest

prediction performance was Random Forest, also yielding the

lowest false positive rates.

V. THREATS TO VALIDITY

In our framework, there are two separate thresholds for

the master node and the compute nodes. Depending on what

these thresholds are, detection rates and false positives may

vary. With a higher threshold, false positives are fewer and

detection rates are slower. With a lower threshold, the false

positives are more frequent and detection rates are quicker.

We do not reset the malicious buffer entries in the compute

399

nodes at first since it ensures a level of suspicion remains for

when attacks do occur. Therefore, it is important to find a

balance for these numbers to maintain efficiency and fairness

in the system.

Flows are non-deterministic in real-time, causing predic-

tions to vary. This is not an issue with our implementation,

but rather an important observation. This is exhibited when we

launch attacks multiple times (as seen in the tables in Section

IV). Often malicious flows are detected and some others can

be missed. This is based on when the flows start forming,

and how closely the patterns resemble malicious or benign

activity.

There are three categories of memory that can be measured:

process, managed, and unmanaged (old & recent). Memory

use may increase to a point of high consumption. This is due

to unused memory being out of our manual control: unused

memory in Dask may not be released back to the operating

system immediately. We seek to improve on this constraint in

future work.

Finally, when attacks begin to target the NIDS itself, Dask

notices incoming connections and reports them. Transmission

of information on the cluster may be interrupted, so we make

the assumption that the adversary is unaware of the NIDS, as

this is beyond the scope of the current work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a lightweight collaborative dis-

tributed NIDS based on machine learning algorithms specifi-

cally for IoT networks. To evaluate the feasibility of applying

the proposed NIDS, we designed an offline benchmark to

stress-test the models and assess how they scale under load,

then measure their performance in real-time. The results show

that the proposed NIDS uses less memory and CPU, while

not sacrificing response time. In addition, we evaluate the

attack detection ability of the distributed NIDS compared to

the state-of-the-art system (Snort) and a centralized version

of the NIDS. For the seven types of attacks we considered,

both the distributed NIDS and centralized version outperform

Snort. Snort detected two out of seven attacks while the

distributed NIDS detected more attacks on average. The

centralized version could also detect all attacks but it used

more resources on a single node. Furthermore, it could not

perform collaborative detection with other nodes, which limits

its flexibility. The distributed NIDS is shown to largely reduce

false positives while maintaining fair judgments and faster

response times. Considering the resource usage, false positive

rates, response times, and deployment structure, the proposed

distributed NIDS is more applicable to IoT networks.

Additional facets are open to future research. We seek to

study a malicious node within the NIDS itself, where attacks

can interrupt the system. We will expand the deliberations to

more complex models using ensemble approaches and tailor

response actions towards specific attacks. Attacks constantly

evolve and all possible cases are not covered, even with

machine learning. Solutions include addressing concept drifts

and aggregating larger datasets along with our own. Finally,

we plan to reduce overhead and memory usage even further

than we currently have, and unifying the NIDS directly onto

network devices (e.g., router, smartphone, etc) for better

responses.

REFERENCES

[1] Z. Aouini and A. Pekar. Nfstream: A flexible network data analysis
framework. Computer Networks, 204:108719, 2022.

[2] L. Babun et al. A survey on IoT platforms: Communication, security,
and privacy perspectives. Computer Networks, 192:108040, 2021.

[3] E. Bertino. Data privacy for IoT systems: Concepts, approaches, and
research directions. In IEEE International Conference on Big Data (Big
Data), pages 3645–3647. IEEE, 2016.

[4] N. Dat-Thinh, H. Xuan-Ninh, and L. Kim-Hung. MidSiot: A multistage
intrusion detection system for internet of things. Wirel. Commun. Mob.
Comput., 2022:1–15, Feb. 2022.

[5] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli. Passban ids:
An intelligent anomaly-based intrusion detection system for iot edge
devices. IEEE Internet of Things Journal, 7(8):6882–6897, 2020.

[6] S. M. Ghaleb, S. Subramaniam, Z. A. Zukarnain, and A. Muhammed.
Mobility management for iot: a survey. EURASIP Journal on Wireless
Communications and Networking, 2016(1):1–25, 2016.

[7] V. Hnamte, G. Balram, et al. Implementation of Naive Bayes Clas-
sifier for Reducing DDoS Attacks in IoT Networks. JOURNAL OF
ALGEBRAIC STATISTICS, 13(2):2749–2757, 2022.

[8] O. Igbe et al. Distributed network intrusion detection systems: An
artificial immune system approach. In IEEE First International Con-
ference on Connected Health: Applications, Systems and Engineering
Technologies (CHASE), pages 101–106, 2016.

[9] S. U. Jan et al. Toward a lightweight intrusion detection system for the
internet of things. IEEE Access, 7:42450–42471, 2019.

[10] H. Jradi et al. Overview of the mobility related security challenges in
lpwans. Computer Networks, 186:107761, 2021.

[11] Y. Kayode Saheed et al. A machine learning-based intrusion detection
for detecting internet of things network attacks. Alexandria Engineering
Journal, 61(12):9395–9409, 2022.

[12] M. A. Khan and K. Salah. Iot security: Review, blockchain solutions,
and open challenges. Future Generation Computer Systems, 82:395–
411, 2018.

[13] A. Khraisat et al. Survey of intrusion detection systems: techniques,
datasets and challenges. Cybersecurity, 2(1), Dec. 2019.

[14] H.-J. Liao et al. Intrusion detection system: A comprehensive review.
Journal of Network and Computer Applications, 36(1):16–24, 2013.

[15] J. E. Luzuriaga et al. Handling mobility in iot applications using the
mqtt protocol. In Internet Technologies and Applications (ITA), pages
245–250, 2015.

[16] M. Marjani et al. Big iot data analytics: Architecture, opportunities,
and open research challenges. IEEE Access, 5:5247–5261, 2017.

[17] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.
Communication-efficient learning of deep networks from decentralized
data. In Artificial intelligence and statistics, pages 1273–1282. PMLR,
2017.

[18] L. Mokry et al. Efficient and privacy-preserving collaborative intrusion
detection using additive secret sharing and differential privacy. In IEEE
International Conference on Big Data (Big Data), pages 3324–3333,
2021.

[19] M. Rocklin. Dask: Parallel computation with blocked algorithms
and task scheduling. In Proceedings of the 14th python in science
conference, volume 130, page 136. Citeseer, 2015.

[20] M. Roesch et al. Snort: Lightweight intrusion detection for networks.
In Lisa, volume 99, pages 229–238, 1999.

[21] K. Scarfone, P. Mell, et al. Guide to intrusion detection and prevention
systems (idps). NIST special publication, 800(2007):94, 2007.

[22] S. Smith. Iot connections to reach 83 billion by 2024, driven by
maturing industrial use cases. Accessed: Apr, 10:2021, 2020.

[23] S. Tomovic et al. Software-defined fog network architecture for iot.
Wireless Personal Communications, 92(1):181–196, 2017.

[24] Y. Zhang et al. Efficient and Intelligent Attack Detection in Software
Defined IoT Networks. IEEE International Conference on Embedded
Software and Systems, ICESS 2020, dec 2020.

400

